1887

Abstract

Cells of WO-1 switch frequently, spontaneously and reversibly between a white and opaque phase. The white-opaque transition involves the regulation of phase-specific genes. In the white budding phase, cells express the white phase-specific gene which encodes a protein with homology to the heat shock protein Hsp 12 of . A recombinant Wh11 protein has been synthesized, purified to apparent homogeneity and used to generate a rabbit polyclonal antiserum. The antiserum was used to localize the Wh11 protein in white phase cells. Wh11 is distributed throughout the cytoplasm but appears to be excluded from vesicles, plasma membrane and nucleus. An analysis by Western blotting of Wh11 expression in a number of strains and related species suggests a correlation between round budding cell shape and expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-8-2245
1996-08-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/8/mic-142-8-2245.html?itemId=/content/journal/micro/10.1099/13500872-142-8-2245&mimeType=html&fmt=ahah

References

  1. Anderson J. M., Soll D.R. 1987; Unique phenotype of opaque cells in the white opaque transition of Candida albicans. . J Bacteriol 169:5579–5588
    [Google Scholar]
  2. Anderson J., Cundiff L., Schnars B., Gao M.X., Mackenzie I., Soll D.R. 1989; Hypha formation in the white-opaque transition of Candida albicans. . Infect Immun 57:458–467
    [Google Scholar]
  3. Anderson J., Mihalik R., Soll D.R. 1990; Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol 172:224–235
    [Google Scholar]
  4. Bedell G.W., Soll D.R. 1979; Effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and -sensitive pathways for mycelium formation. Infect Immun 26:348–354
    [Google Scholar]
  5. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Buffo J., Herman M.A., Soll D.R. 1984; A characterization of pH-regulated dimorphism in Candida albicans. . Mycopathologia 85:21–30
    [Google Scholar]
  7. Fonzi W.A., Irwin M.Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. . Genetics 134:717–728
    [Google Scholar]
  8. Hube B., Monod M., Schofield D.A., Brown A.J., Gow N.A. 1994; Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. . Mol Microbiol 14:87–99
    [Google Scholar]
  9. Kennedy M.J., Rogers A.L, Soll D.R., Yancey R.J. 1988; Variation in adhesion and cell surface hydrophobicitv in Candida albicans white and opaque phenotypes. Mycopathologia 102:149–156
    [Google Scholar]
  10. Kolotila M.P., Diamond R.D. 1990; Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1. Infect Immun 58:1174–1179
    [Google Scholar]
  11. Morrow B., Srikantha T., Soll D.R. 1992; Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. . Mol Cell Biol 12:2997–3005
    [Google Scholar]
  12. Morrow B., Srikantha T., Anderson J., Soll D.R. 1993; Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans. . Infect Immun 61:1823–1828
    [Google Scholar]
  13. Morrow B., Ramsey H., Soll D.R. 1994; Regulation of phase-specific genes in the more general switching system of Candida albicans strain 3153A. J Med Vet Mycol 32:287–294
    [Google Scholar]
  14. Pomes R., Gil C., Nombela C. 1985; Genetic analysis of Candida albicans morphological mutants. J Gen Microbiol 131:2107–2113
    [Google Scholar]
  15. Praekelt U.M., Meacock P.A. 1990; HSP12, a new small heat shock gene of Saccharomyces cerevisiae'. analysis of structure, regulation and function. Mol Gen Genet 223:97–106
    [Google Scholar]
  16. Ray T.L., Payne C.D. 1990; Candida albicans acid proteinase: a role in virulence. In Candida albicans Acid Proteinase-.A Role in Virulence pp. 163–178 Edited by Ayoub E.M., Cassell G.H, Branche W.C.J., Henry T.J. Washington, DC: American Society for Microbiology.;
    [Google Scholar]
  17. Rossi J.M., Lindquist S. 1989; The intracellular location of yeast heat-shock protein 26 varies with metabolism. J Cell Biol 108:425–439
    [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  19. Schägger H., Borchart U., Machleidt W., Link T.A., Von J.G. 1987; Isolation and amino acid sequence of the ‘Rieske’ iron sulfur protein of beef heart ubiquinol: cytochrome c reductase. FEES Lett 219:161–168
    [Google Scholar]
  20. Slutsky B., Buffo J., Soll D.R. 1985; High-frequency switching of colony morphology in Candida albicans. . Science 230:666–669
    [Google Scholar]
  21. Slutsky B., Staebell M., Anderson J., Risen L., Pfaller M., Soll D.R. 1987; ‘White-opaque transition’: a second high-frequency switching system in Candida albicans. . J Bacteriol 169:189–197
    [Google Scholar]
  22. Smith D.B., Johnson K.S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40
    [Google Scholar]
  23. Soll D.R. 1979; Timers in developing systems. Science 203:841–849
    [Google Scholar]
  24. Soll D.R. 1986; The regulation of cellular differentiation in the dimorphic yeast Candida albicans. . BioEssays 5:5–11
    [Google Scholar]
  25. Soll D.R. 1992; High-frequency switching in Candida albicans. . Clin Microbiol Rev 5:183–203
    [Google Scholar]
  26. Srikantha T., Soll D.R. 1993; A white-specific gene in the white-opaque switching system of Candida albicans. . Gene 131:53–60
    [Google Scholar]
  27. Srikantha T., Chandrasekhar A., Soll D.R. 1995; Functional analysis of the promoter of the phase-specific WH11 gene of Candida albicans. . Mol Cell Biol 15:1797–1805
    [Google Scholar]
  28. Stone R.L., Matarese V., Magee B.B., Magee P.T., Bernlohr D.A. 1990; Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids. Gene 96:171–176
    [Google Scholar]
  29. Sullivan D.J., Westerneng T.J., Haynes K.A., Bennett D.E., Coleman D.C. 1995; Candida dubliniensis sp.nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141:1507–1521
    [Google Scholar]
  30. Varela J.C., Praekelt U.M., Meacock P.A., Planta R.J., Mager W.H. 1995; The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15:6232–6245
    [Google Scholar]
  31. Vargas K., Wertz P.W., Drake D., Morrow B., Soll D.R. 1994; Differences in adhesion of Candida albicans 3153A cells exhibiting switch phenotypes to buccal epithelium and stratum corneum. Infect Immun 62:1328–1335
    [Google Scholar]
  32. Wessels D., Titus M., Soll D.R. 1996; A Dictyostelium myosin I plays a crucial role in regulating the frequency of pseudopods formed on the substratum. Cell Motil Cytoskeleton 33:64–79
    [Google Scholar]
  33. White T.C., Miyasaki S.H., Agabian N. 1993; Three distinct secreted aspartyl proteinases in Candida albicans. . J Bacteriol 175:6126–6133
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-8-2245
Loading
/content/journal/micro/10.1099/13500872-142-8-2245
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error