1887

Abstract

In chemostat culture, the microaerophilic, CO requiring, gingival-plaque-associated bacterium responded to the addition of glucose (1–6 g l) by doubling its growth rate and increasing its biomass yield fivefold. The data suggest that the glucose is catabolized by a fully aerobic route. Rather than repressing hydrolytic enzymes which might be associated with pathogenic properties, glucose enhanced the specific activity of aminopeptidase, trypsin-like protease, acid and alkaline phosphatase and α-glucosidase in comparison with a control culture grown in a tryptone/thiamin medium. Thus, the supply of glucose could be of importance in maximizing the pathogenic potential of this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-8-2161
1996-08-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/8/mic-142-8-2161.html?itemId=/content/journal/micro/10.1099/13500872-142-8-2161&mimeType=html&fmt=ahah

References

  1. Ainamo J., Lahtinen A., Uitto V.-J. 1990; Rapid periodontal destruction in adult humans with poorly controlled diabetes. J Clin Periodontol 17:22–28
    [Google Scholar]
  2. Bessey O.A., Lowry O.H., Brock M.J. 1946; A method for the rapid determination of alkaline phosphatase with five cubic millilitres of serum. J Biol Chem 164:321–329
    [Google Scholar]
  3. Forlenza S.W., Newman M.G., Lipsey A.I., Siegel S.E., Blachman U. 1980; Capnocytophaga sepsis: a newly recognized clinical entity in granulocytopenic patients. Lancet 1:567–568
    [Google Scholar]
  4. Holland K.T., Greenman J., Cunliffe W.J. 1979; Growth of propionibacteria on synthetic medium; growth yields and enzyme production. J Appl Bacteriol 47:383–394
    [Google Scholar]
  5. Leadbetter E.R., Holt S.C., Socransky S.S. 1979; Capnocytophaga: new genus of Gram-negative gliding bacteria. I. General characteristics, taxonomic considerations and significance. Arch Microbiol 122:9–16
    [Google Scholar]
  6. Magasanik B. 1961; Cellular regulatory mechanisms. Cold Spring Harbor Symp Quant Biol 26:249–256
    [Google Scholar]
  7. Mashimo P.A., Yamamoto Y., Slots J., Park B.H., Genco R.J. 1983; The periodontal microflora of juvenile diabetics: culture, immunofluorescence and serum antibody studies. J Periodontol 54:420–430
    [Google Scholar]
  8. Nakamura M., Slots J. 1982; Aminopeptidase activity of Capnocytophaga . J Periodontal Res 17:597–603
    [Google Scholar]
  9. Newman M.G., Socransky S.S., Savitt E.D., Crawford A. 1976; Studies in the microbiology of periodontosis. T Periodontol 47:373–379
    [Google Scholar]
  10. Parenti D.M., Snydman D.R. 1985; Capnocytophaga species: infections in non-immunocompromised and immunocompromised hosts. J Infect Dis 151:140–147
    [Google Scholar]
  11. Parker R.C., Rapley J.W., Isley R.C., Spencer P., Killoy W.J. 1993; Gingival crevicular blood for the assessment of blood- glucose in diabetic patients. J Periodontol 64:666–672
    [Google Scholar]
  12. Payne W.J. 1970; Energy yields and the growth of heterotrophs. Annu Rev Microbiol 24:17–52
    [Google Scholar]
  13. Poirier T.P., Holt C.S. 1983; Acid and alkaline phosphatases of Capnocytophaga species. I. Production and cytological localization of enzymes. Can J Microbiol 29:1350–1360
    [Google Scholar]
  14. Safkan-Seppälä B., Ainamo J. 1992; Periodontal conditions in insulin-dependent diabetes mellitus. J Clin Periodontal 19:24–29
    [Google Scholar]
  15. Shibata Y., Fujimura S., Nakamura T. 1992; Isolation and characterization of enzymes hydrolyzing chymotrypsin synthetic substrate (enzyme 1) and trypsin synthetic substrate (enzyme 2) from the envelope fraction of Capnocytophagagingivalis . Med Microbiol Immunol 181:107–115
    [Google Scholar]
  16. Slots J. 1976; The predominant cultivable organisms in juvenile periodontitis. Scand J Dent Res 84:1–10
    [Google Scholar]
  17. Socransky S.S., Holt S.C., Leadbetter E.R., Tanner A.C.R., Savitt E., Hammond B.F. 1979; Capnocytophaga: new genus of Gram-negative gliding bacteria. III. Physiological characterization. Arch Microbiol 122:29–33
    [Google Scholar]
  18. Spratt D.A. 1994 A study of aminopeptidase and other hydrolytic enzymes produced by Capnocytophaga gingivalis. PhD thesis University of the West of England; Bristol, UK:
    [Google Scholar]
  19. Spratt D.A., Greenman J., Schaffer A.G. 1995; Capnocytophaga gingivalis aminopeptidase: a potential virulence factor. Microbiology 141:3087–3093
    [Google Scholar]
  20. Tempest D.W. 1970; The continuous cultivation of microorganisms. I. Theory of the chemostat. Methods Microbiol 2:259–276
    [Google Scholar]
  21. Winn R.E., Chase W.F., Lauderale P.W., McCleskey F.K. 1984; Septic arthritis involving Capnocytophaga ochracea . J Clin Microbiol 19:583
    [Google Scholar]
  22. Yoshimura F., Nishikata M., Suzuki T., Hoover C.I., Newbrun E. 1984; Characterisation of a trypsin-like protease from the bacterium Bacteroides gingivalis isolated from human dental plaque. Arch Oral Biol 29:559–564
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-8-2161
Loading
/content/journal/micro/10.1099/13500872-142-8-2161
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error