1887

Abstract

A cluster of anthracycline biosynthetic genes isolated from was expressed in and in A 12 kb DNA fragment cloned from this cluster in pIJ486 caused the production of a novel compound when introduced into The compound is derived from nogalonic acid methyl ester, an early intermediate in nogalamycin biosynthesis. Complementation with the cloned 12 kb fragment of mutants blocked in aclacinomycin biosynthesis caused the production of hybrid anthracyclines. Cloning of the nogalamycin gene cluster should make possible a detailed study of the biosynthesis of this interesting antibiotic, as well as the production of novel anthracyclines of potential value as cytostatic drugs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-8-1965
1996-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/8/mic-142-8-1965.html?itemId=/content/journal/micro/10.1099/13500872-142-8-1965&mimeType=html&fmt=ahah

References

  1. Bartel P.L., Zhu C.-B., Lampel J.S., Dosch D.C., Connors N.C., Strohl W.R., Beale J.M. JR Floss H.G. 1990; Biosynthesis by anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in Streptomycetes-. clarification of actinorhodin gene functions. J Bacterial 172:4816–4826
    [Google Scholar]
  2. Bhuyan B.K., Dietz A. 1965; Fermentation, taxonomic, and biological studies of nogalamycin. Antimicrob Agents Chemother 9:836–844
    [Google Scholar]
  3. Bibb M.J., Sherman D.H., Omura S., Hopwood D.A. 1994; Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene 142:31–39
    [Google Scholar]
  4. Davis N.K., Chater K.F. 1990; Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4:1679–1692
    [Google Scholar]
  5. Fernandez-Moreno M.A., Martinez E., Boto L., Hopwood D.A., Malpartida F. 1992; Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem 267:19278–19290
    [Google Scholar]
  6. Fujiwara A., Hoshino T., Tazoe M. 1980; US Patent 4375511. Published 1 March 1983, priority 27 October 1980.
    [Google Scholar]
  7. Grimm A., Madduri K., Ali A., Hutchinson C.R. 1994; Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151:1–10
    [Google Scholar]
  8. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton CJ., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. 1985a Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation;
    [Google Scholar]
  9. Hopwood D.A., Malpartida F., Kieser H.M., Ikeda H.., Duncan J., Fujii I., Rudd B.A.M., Floss H.G., Omura S. 1985b; Production of ̒hybrid̓ antibiotics by genetic engineering. Nature 314:642–644
    [Google Scholar]
  10. Hoshino T., Tazoe M., Nomura S., Fujiwara A. 1982; New anthracycline antibiotics, auramycins and sulfurmycins.II. Isolation and characterization of 10 minor components. J Antibiot 35:1271–1279
    [Google Scholar]
  11. Li H.L., Krueger W.C. 1991; The biochemical pharmacology of nogalamycin and its derivatives. Pharmacol Tber 51:239–255
    [Google Scholar]
  12. McDaniel R., Ebert-Khosla S., Fu H., Hopwood D.A., Khosla C. 1994a; Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. Proc Natl Acad Sci USA 9111542–11546
    [Google Scholar]
  13. McDaniel R., Ebert-Khosla S., Hopwood D.A., Khosla C. 1994b; Engineered biosynthesis of novel polyketides: actVll and actW genes encode aromatase and cyclase enzymes,respectively. J Am Chem Soc 116:10855–10859
    [Google Scholar]
  14. McDaniel R., Ebert-Khosla S., Hopwood D.A., Khosla C. 1995; Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375:549–554
    [Google Scholar]
  15. Malpartida F., Hallam S.E., Kieser H.M., Motamedi H., Hutchinson C.R., Butler M.J., Sugden D.A., Warren M., McKillop G, Bailey C.R., Humphreys G.O., Hopwood D.A. 1987; Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic synthesis genes. Nature 325:818–821
    [Google Scholar]
  16. Muth G., Nussbaumer B., Wohlleben W., Pühler F. 1989; A vector system with temperature sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348
    [Google Scholar]
  17. Niemi J., Ylihonko K., Hakala J., Pärssinen R., Kopio A., Mäntsälä P. 1994; Hybrid anthracycline antibiotics: production of new anthracyclines by cloned genes from Streptomyces purpurascens in Streptomyces galilaeus. . Microbiol 140:1351–1358
    [Google Scholar]
  18. Oki T., Matsuzawa Y., Yoshimoto A., Numata K., Kitamura I., Hori S., Takamatsu A., Umezawa H., Ishizuka M., Naganawa H., Suda H., Hamada M., Takeuchi T. 1975; New antitumor antibiotics, aclacinomycins A and B. J Antibiot 28:830–834
    [Google Scholar]
  19. Raleigh E.A., Murray N.E., Revel H., Blumenthal R.M., Westaway D., Reith A.D., Rigby P.W.J., Elhai J., Hanahan D. 1988; McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res 16:1563–1575
    [Google Scholar]
  20. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Eaboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sherman D.H., Malpartida F., Bibb M.J., Kieser H.M., Hopwood D.A. 1989; Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J 8:2717–2725
    [Google Scholar]
  22. Ward J.M., Janssen G.R., Kieser T., Bibb M.J., Buttner M.J., Bibb M.J. 1986; Construction and characterization of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase from Tn 5 as indicator. Mol Gen Genet 203:468–478
    [Google Scholar]
  23. Wiley P.F., MacKellar F.A., Caron E.L., Kelly R.B. 1968; Isolation, characterization and degradation of nogalamycin. Tetrahedron Lett 6:663–668
    [Google Scholar]
  24. Wiley P.F., Kelly R.B., Caron E.L., Wiley V.H., Johnson J.H., MacKellar F.A., Mizsak S.A. 1977; Structure of nogalamycin. J Am Chem Soc 99:542–549
    [Google Scholar]
  25. Wiley P.F., Elrod D.W., Marshall V.P. 1978; Biosynthesis of the anthracycline antibiotics nogalamycin and steffimycin B. J Org Chem 43:3457–3461
    [Google Scholar]
  26. Ye J., Dickens M.L., Plater R., Li Y., Lawrence J., Strohl W.R. 1994; Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol 176:6270–6280
    [Google Scholar]
  27. Ylihonko K., Hakala J., Niemi J., Lundell J., Mäntsälä P. 1994; Isolation and characterization of aclacinomycin A-non- producing Streptomyces galilaeus (ATCC 31615) mutants. Microbiol 140:1359–1365
    [Google Scholar]
  28. Ylihonko K., Tuikkanen J., Jussila S., Cong L., Mäntsälä P. 1996; A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater: sequence analysis and complementation of early blocked mutations of the anthracycline pathway. Mol Gen Gene (in press).
    [Google Scholar]
  29. Yu T.-W., Bibb M.J., Revill W.P., Hopwood D.A. 1994; Cloning, sequencing and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. . J Bacteriol 176:2627–2634
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-8-1965
Loading
/content/journal/micro/10.1099/13500872-142-8-1965
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error