1887

Abstract

The kinetics, energetics and specificity of a general amino acid transporter were studied in the ectomycorrhizal fungus (Batsch) Fr. The uptake of amino acids showed features characteristic of active transport. After correction for a non-mediated transport component, the kinetics of glutamate, glutamine, alanine and aspartate uptake measured over a wide concentration range followed the simple Michaelis-Menten saturation curves. The apparent derived from the Eadie-Hofstee plots ranged from 7 μM for alanine to 27 μM for glutamate. Dinitrophenol, carbonyl cyanide -chlorophenylhydrazone and NaN strongly inhibited amino acid uptake, whereas dicyclohexylcarbodiimide, vanadate and the ionophores monensin and nonactin had no effect on the uptake. Both pH dependence and inhibition by protonophores are consistent with a proton symport mechanism for amino acid uptake by Competition studies indicated a broad substrate recognition by the uptake system, which resembles the general amino acid permease of yeast. Dixon plots of the inhibition of glutamate uptake by alanine, lysine and methionine sulfoximine showed that inhibitions were competitive. The physiological importance of this transporter for the exchange of nitrogenous compounds between fungal and host plant cells in ectomycorrhizal associations is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1749
1996-07-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1749.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1749&mimeType=html&fmt=ahah

References

  1. Abuarghub S.M., Read D. J. 1988; The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile.. New Phytol 108:433–441
    [Google Scholar]
  2. Abuzinadah R.A., Read D. J. 1986; The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi.. New Phytol 103:481–493
    [Google Scholar]
  3. Abuzinadah R.A., Read D. J. 1988; Amino acids as nitrogen sources for ectomycorrhizal fungi.. Trans Br Mycol Soc 91:473–479
    [Google Scholar]
  4. Barran L.R. 1981; Methionine transport by mycelia of Fusarium oxysporum f. sp. lycopersici. Can J Microbiol 27:743–747
    [Google Scholar]
  5. Borstlap A.C. 1983; The use of model-fitting in the interpretation of dual uptake isotherms.. Plant Cell Environ 6:407–416
    [Google Scholar]
  6. Borstlap A. C., Meenks J. L. D., Van Eck W.F., Bicker J. T. E. 1986; Kinetics and specificity of amino acid uptake by the duckweed Spirodela polyrhiza (L.). Schleiden.. J Exp Bot 37:1020–1035
    [Google Scholar]
  7. Botton B., Chalot M. 1995; Nitrogen assimilation : enzymology in ectomycorrhizas. In Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology pp. 325–363 Edited by Hock B., Varma A. Heidelberg: Springer-Verlag;
    [Google Scholar]
  8. Bush D.R. 1993; Proton-coupled sugar and amino acid transporters in plants.. Annu Rev Plant Physiol Plant Mol Biol 44:513–542
    [Google Scholar]
  9. Chalot M., Stewart G. R., Brun A., Martin F., Botton B. 1991; Ammonium assimilation by sptuce-Hebeloma sp. ectomycorrhizas.. New Phytol 119:541–550
    [Google Scholar]
  10. Chalot M., Brun A., Finlay R. D., Söderström B. 1994a; Metabolism of [14C] glutamate and [14C] glutamine by the ectomycorrhizal fungus Paxiiius involutus. Microbiology 140:1641–1649
    [Google Scholar]
  11. Chalot M., Brun A., Finlay R. D., Söderström B. 1994b; Respiration of [14C] alanine by the ectomycorrhizal fungus Paxiiius involutus. FEMS Microbiol Eett 121:87–92
    [Google Scholar]
  12. Chalot M., Kytoviita M. M., Brun A., Finlay R. D., Söderström B. 1995a; Factors affecting amino acid uptake by the ectomycorrhizal fungus Paxiiius involutus.. Mycol Res 99:1131–1138
    [Google Scholar]
  13. Chalot M., Finlay R. D., Ek H., Söderström B. 1995b; Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxiiius involutus. Exp Mycol 19:297–304
    [Google Scholar]
  14. Despeghel J.P., Delrot S. 1983; Energetics of amino acid uptake by Vicia jaba leaf tissues.. Plant Physiol 71:1–6
    [Google Scholar]
  15. Etherton B., Rubinstein B. 1978; Evidence for amino acid H+ co-transport in oat coleoptiles.. Plant Physiol 61:933–937
    [Google Scholar]
  16. Finlay R. D., Ek H., Odham G., Söderström B. 1989; Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhiza systems infected with Paxillus involutus.. New Pbytol 113:47–55
    [Google Scholar]
  17. Finlay R. D., Finlay R. D., Frostegård Å, Son nerf eldt A.M. 1992; Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pirns contorta Dougl. ex Loud.. New Phytol 120:105–115
    [Google Scholar]
  18. Frommer W. B., Kwart M., Hirner B., Fischer W. N., Hummel S., Ninnemann O. 1994; Transporters for nitrogenous compounds in plants. Plant Mol Biol 26:1651–1670
    [Google Scholar]
  19. Horak J. 1986; Amino acid transport in eukaryotic microorganisms. Biochim Biophys Acta 864:223–256
    [Google Scholar]
  20. Johannes E., Felle H. 1985; Transport of basic amino acids in Riccia fluitane:, evidence for a second binding site. Planta 166:244–251
    [Google Scholar]
  21. Kasianowicz J., Benz R., McLaughlin S. 1984; The kinetic mechanism by which CCCP (carbonyl cyanide-w-chlorophenyl- hydrazone) transports protons across membranes. J Membr Biol 82:179–190
    [Google Scholar]
  22. Lapeyrie F., Chilvers G. A., Bhem C. A. 1987; Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch. ex Fr.) Fr.. New Pbytol 106:139–146
    [Google Scholar]
  23. Lien R., Rognes S. E. 1977; Uptake of amino acids by barley leaf slices : kinetics, specificity, and energetics.. Physiol Plant 41:175–183
    [Google Scholar]
  24. Lüttge U., Jung J. D., Ullrich-Eberius C.I. 1981; Evidence for amino-acid-H+ cotransport in Eemna gibba given by effects of fusicoccin.. Z Pflanyenphysiol 102:117–125
    [Google Scholar]
  25. Marre E., Ballarin-Denti A. 1985; The proton pumps of the plasmalemma and the tonoplast of higher plants.. J Bioenerg Biomembr 17:1–21
    [Google Scholar]
  26. Martin F., Botton B. 1993; Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza.. Adv Plant Pathol 9:83–102
    [Google Scholar]
  27. Marx D.H. 1969; The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria.. Phytopathology 59:159–163
    [Google Scholar]
  28. McCutcheon S.L., Bown A. W. 1987; Evidence for a specific glutamate/H+ cotransport in isolated mesophyll cells.. Plant Physiol 83:691–697
    [Google Scholar]
  29. Meins J.F., Abrams M. L. 1972; How methionine and glutamine prevent inhibition of growth by methionine sulfoximine. Biochim Biophys Acta 266:307–311
    [Google Scholar]
  30. Pireaux J. C., Hayani-Obeidou W., Chalot M., Botton B., Dizengremel P. 1995; Mitochondria in the white-rot fungus Phanerochaete chrysosporium : purification and evidence for a mitochondrial isoform of aspartate aminotransferase. Exp Mycol 19:91–100
    [Google Scholar]
  31. Ramos E. H., De Bongioanni L.C., Stoppani A. O. M. 1980; Kinetics of l-[14C]leucine transport in Saccharomyces cerevisiae. Effect of energy coupling inhibitors. Biochim Biophys Acta 599:214–231
    [Google Scholar]
  32. Roos W. 1989; Kinetic properties, nutrient-dependent regulation and energy coupling of amino acid transport systems in Pénicillium cyclopium. Biochim Biophys Acta 978:119–133
    [Google Scholar]
  33. Roos W., Luckner M. 1984; Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Pénicillium cyclopium. J Gen Microbiol 130:1007–1014
    [Google Scholar]
  34. Sandeaux R., Sandeaux J., Gavach C., Brun B. 1982; Transport of Na+ by monensin across bimolecular lipid membranes. Biochim Biophys Acta 684:127–132
    [Google Scholar]
  35. Sanders D., Slayman C. L., Pall M. L. 1983; Stoichiometry of H+/amino acid cotransport in Neurospora crassa revealed by current- voltage analysis. Biochim Biophys Acta 735:67–76
    [Google Scholar]
  36. Sauer N., Tanner W. 1985; Selection and characterization of Chlorella mutants deficient in amino acid transport. Further evidence for three independent systems.. Plant Physiol 79:760–764
    [Google Scholar]
  37. Schobert C., Komor E. 1987; Amino acid uptake by Ricinus communis roots: characterization and physiological significance.. Plant Cell Environ 10:493–500
    [Google Scholar]
  38. Smith F.A, Smith S. E. 1989; Membrane transport at the biotrophic interface : an overview.. Aust J Plant Physiol 16:33–43
    [Google Scholar]
  39. Snedden W. A., Chung I., Pauls R. H., Bown A. W. 1992; Proton/L-glutamate symport and the regulation of intracellular pH in isolated mesophyll cells. Plant Physiol 99:665–671
    [Google Scholar]
  40. Sopanen T., Väisänen E. 1985; Uptake of glutamine by the scutellum of germinating barley grain. Plant Physiol 78:684–689
    [Google Scholar]
  41. Sophianopoulou V., Diallinas G. 1995; Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev 16:53–75
    [Google Scholar]
  42. Spanswick R.M., Miller A. G. 1977; Measurement of the cytoplasmic pH in Nitella translucens. Comparison of values obtained by microelectrode and weak acid methods.. Plant Physiol 59:664–666
    [Google Scholar]
  43. Steverding D., Kadenbach B. 1990; The K+-ionophore nonactin and valinomycin interact differently with the protein of reconstituted cytochrome c oxidase.. J Bioenerg Biomembr 22:197–205
    [Google Scholar]
  44. Väisänen E., Sopanen T. 1986; Uptake of proline by the scutellum of germinating barley grain. Plant Physiol 80:902–907
    [Google Scholar]
  45. Wiame J. M., Grenson M., Arst H. N. 1985; Nitrogen catabolic repression in yeast and filamentous fungi. Adv Microb Physiol 26:1–88
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1749
Loading
/content/journal/micro/10.1099/13500872-142-7-1749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error