1887

Abstract

A periplasmic arginine transport system that is a member of the ATP-dependent transport superfamily was identified in The gene encoding the periplasmic binding protein () was cloned and the protein overexpressed in LapT was purified to homogeneity using a modified osmotic shock procedure and anion-exchange column chromatography. Filter-binding assays established that LapT is an t-arginine-binding protein. Various amino acids were tested for their ability to inhibit L-arginine binding to LapT. When present in 100-fold excess, only L-arginine, D-arginine and citrulline competed with L-arginine for binding. Arginine transport in whole cells was competitively inhibited by the same amino acids, suggesting that the LapT permease specifically transports L-arginine. The dissociation constant for the L-arginine-LapT complex was 170 nM and the stoichiometry of binding was approximately 0.8 mol L-arginine (mol LapT). A polyclonal antibody raised against the purified protein permitted detection of LapT in periplasmic fractions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1739
1996-07-01
2021-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1739.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1739&mimeType=html&fmt=ahah

References

  1. Ames G. F.-L. 1986; Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55:397–425
    [Google Scholar]
  2. Bachmann B.J. 1987; Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium : Cellular and Molecular Biology. Edited by Neidhardt F. C., Ingraham J. L., Brooks K., Magasanik B., Schaechter M. , Umbarger H. E. . pp. 1190–1219 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Chen C.-C., Tsuchiya Y., Yamane Y., Wood J. M., Wilson T. H. 1985; Na+ (Li+)-proline cotransport in Escherichia coli.. J Membr Biol 84:157–164
    [Google Scholar]
  4. Davidson A.L., Nikaido H. 1990; Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli.. J Biol Chem 265:4254–4260
    [Google Scholar]
  5. Feng DF., Doolittle R. F. 1987; Progressive sequence alignment to correct phylogenetic trees. J Mol Evol 25:351–360
    [Google Scholar]
  6. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J.-F, Dougherty B. A., Merrick J. M., McKenney K., Sutton G., Fitz Hugh W., Fields C., Gocayne J. D., Scott J., Shirley R., Liu L.-I, Glodek A., Kelley J. M., Weidman J. F., Phillips C. A., Spriggs T., Hedblom E., Cotton M. D., Utterback T. R., Hanna M. C., Nguyen D. T., Saudek D. M., Brandon R. C., Fine L. D., Fritchman J. L., Fuhrmann J. L., Geoghagen N. S. M., Gnehm C. L., McDonald L.A., Small K. V., Fraser C. M., Smith H. O., Venter J. C. 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  7. Freifelder D. 1982 Physical Biochemistry: Applications to Bio-chemistry and Molecular Biology, 2 nd edn. New York: W. H. Freeman;
    [Google Scholar]
  8. Graña D., Gardella T., Susskind M. M. 1988; The effects of mutations in the ant promoter of phage P22 depend on context.. Genetics 120319–327
    [Google Scholar]
  9. Hammes G. 1982 Enzyme Catalysis and Regulation New York: Academic Press;
    [Google Scholar]
  10. Heukeshoven J., Dernick R. 1988; Improved silver staining procedure for fast staining in Phast System Development Unit.. Electrophoresis 9:28–32
    [Google Scholar]
  11. Higgins C.F., Ames G. F.-L. 1981; Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: complete nucleotide sequences. Proc Natl Acad Sci USA 78:6038–6042
    [Google Scholar]
  12. Higgins C. F., Hiles I. D., Salmond G. P. C., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W., Hermodson M. A. 1986; A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448–450
    [Google Scholar]
  13. Highlander S.K., Weinstock G. M. 1994; Static DNA bending and protein interactions within the Pasteurella haemolytica leucotoxin promoter region: development of an activation model for leucotoxin transcriptional control.. DNA Cell Biol 13:171–181
    [Google Scholar]
  14. Highlander S. K., Chidambaram M., Engler M. J., Weinstock G. M. 1989; DNA sequence of the Pasteurella haemolytica leucotoxin gene cluster.. DNA Cell Biol 8:15–28
    [Google Scholar]
  15. Highlander S. K., Wickersham E. A., Garza O., Weinstock G. M. 1993; Expression of the Pasteurella haemolytica leucotoxin is inhibited by a locus that encodes an ATP-binding cassette (ABC) homolog. Infect Immun 61:3942–3951
    [Google Scholar]
  16. Kang C.-H., Shin W.-C, Yamagata Y., Gokcen S., Ames G.F.-L., Kim S.-H. 1991; Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J Biol Chem 266:23893–23899
    [Google Scholar]
  17. Kerppola R.E., Ames G. F.-L. 1992; Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. J Biol Chem 267:2329–2336
    [Google Scholar]
  18. Kerppola R. E., Shyamala V. K., Klebba P., Ames G. F.-L. 1991; The membrane-bound proteins of periplasmic permeases form a complex. Identification of the histidine permease His QMP complex. J Biol Chem 266:9857–9865
    [Google Scholar]
  19. Kondo T., Fitzgerald D., Chaunday U. K., Adhya S., Pastan I. 1988; Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J Biol Chem 265:9470–9475
    [Google Scholar]
  20. Kustu S.G., Ames G. F.-L. 1973; The his P protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J Bacteriol 116:107–113
    [Google Scholar]
  21. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  22. Lever J.E. 1972; Purification and properties of a component of histidine transport in Salmonella typhimurium. J Biol Chem 247:4317–4326
    [Google Scholar]
  23. Miller J.H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. 1981; Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem 256:11804–11808
    [Google Scholar]
  25. Nikaido K., Ames G. F.-L. 1992; Purification and characterization of the periplasmic lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium. J Biol Chem 267:20706–20712
    [Google Scholar]
  26. O'Callaghan C.H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of /7-lactamases by using a chromogenic cephalosporin substrate.. Antimicrob Agents Chemother 1:283–288
    [Google Scholar]
  27. Oh B.-H., Kang C.-H, De Bondt H., Kim S.-H, Nikaido K., Joshi A.K., Ames G. F.-L. 1994; The bacterial periplasmic histidine- binding protein: structure/function analysis of the ligand-binding site and comparison with related proteins. J Biol Chem 266:4135–4143
    [Google Scholar]
  28. Rosen B.P. 1971; Basic amino acid transport in Escherichia coli. J Biol Chem 246:3653–3662
    [Google Scholar]
  29. Rosen B.P. 1973; Basic amino acid transport in Escherichia coli. II. Purification and properties of an arginine-specific binding protein. J Biol Chem 248:1211–1218
    [Google Scholar]
  30. Schaffner W., Weissman C. 1973; A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem 56:502–514
    [Google Scholar]
  31. Shewen P.E., Wilkie B. N. 1982; Cytotoxin of Pasteurella haemolytica acting on bovine leukocytes. Infect Immun 35:91–94
    [Google Scholar]
  32. Speiser D.M., Ames G. F.-L. 1991; Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins. J Bacteriol 173:1444–1451
    [Google Scholar]
  33. Tam R., Saier M. H. 1993; Structural, functional and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346
    [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications.. Proc Natl Acad Sci USA 76:4350–4354
    [Google Scholar]
  35. Walker J. E., Saraste M., Runswick M. J., Gay J. J. 1982; Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  36. Wissenbach U., Keck B., Unden G. 1993; Physical map location of the new art PlQMJ genes of Escherichia coli, encoding a periplasmic arginine transport system. J Bacteriol 175:3687–3688
    [Google Scholar]
  37. Wissenbach U., Six S., Bongaerts J., Ternes D., Steinwachs S., Unden G. 1995; A third periplasmic transport system for larginine in Escherichia coli\ molecular characterization of the art PIQMJ genes, arginine binding and transport. Mol Microbiol 17:675–686
    [Google Scholar]
  38. Witholt B., Boekhout M., Brock M., Kingma J., van Heerikhuizen H., de Leij L. 1976; An efficient and reproducible procedure for the formation of sphaeroplasts from variously grown Escherichia coli.. Anal Biochem 74:160–170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1739
Loading
/content/journal/micro/10.1099/13500872-142-7-1739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error