The genes lepA and hemN form a bicistronic operon in Bacillus subtilis Free

Abstract

The operon of was found to be bicistronic and to consist of the two genes and which encode a putative GTP-binding protein and an oxygen-independent coproporhyrinogen III oxidase, respectively. The operon is located immediately upstream of the operon. Both operons are transcribed in the same direction and are not separated by an obvious transcription-terminator-like structure. The operon is preceded by a potential vegetative promoter, and there is a putative strong intergenic terminator between and Northern blot experiments revealed only a transcript corresponding to but expression of was demonstrated in slot-blot and immunoblot experiments using antibodies raised against Histagged HemN. The data suggest that most of the transcripts originating at the potential vegetative promoter are terminated at the intergenic terminator. Readthrough transcription into the downstream operon was not found.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1641
1996-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1641.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1641&mimeType=html&fmt=ahah

References

  1. Beall B., Lutkenhaus J. 1989; Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and temperature sensitivity. J. Bacteriol 171:6821–6834
    [Google Scholar]
  2. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  3. Black M. T., Munn G. R., Al I sop A.E. 1992; On the catalytic mechanism of prokaryotic leader peptidase. Biochem J 282:539–543
    [Google Scholar]
  4. Coomber S. A., Jones R. M., Jordan P. M., Hunter C. N. 1992; A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene. Mol Microbiol 6:3155–3169
    [Google Scholar]
  5. Dibb N.J., Wolfe P. B. 1986; lep operon proximal gene is not required for growth or secretion by Escherichia coli. J Bacteriol 16:83–87
    [Google Scholar]
  6. van Dijl J.M., van den Bergh R., Reversma T., Smith H., Bron S., Venema G. 1990; Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli. Mol Gen Genet 223:233–240
    [Google Scholar]
  7. Dubnau D., Davidoff-Abelson R. 1971; Fate of transforming DNA, following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol 56:209–221
    [Google Scholar]
  8. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J.-F, Dougherty B. A., Merrick J. M., McKenney K., Sutton G., Fitz Hugh W., Fields C., Gocayne J. D., Scott J., Shirley R., Liu L.-I, Glodek A., Kelley J. M., Weidman J. F., Phillips C. A., Spriggs T., Hedblom E. 1995; Whole-genome random sequencing and assembly of Elaemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  9. Grunstein M., Wallis J. 1979; Colony hybridization. Methods Enzymol 68:379–389
    [Google Scholar]
  10. Haldenwang W.G. 1995; The sigma factors of Bacillus subtilis. Microbiol Reo 59:1–30
    [Google Scholar]
  11. Hecker M., Schumann W., Völker U. 1996; Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol19 417–428
    [Google Scholar]
  12. Hochuli E., Bannwarth W., Döbeli H., Gentz R., Stüber D. 1988; Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate absorbent. Bio Technology 6:1321–1325
    [Google Scholar]
  13. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825
    [Google Scholar]
  14. Howe M.M., Margolin W. 1986; Localization and DNA sequence analysis of the C gene of bacteriophage Mu, the positive regulator of Mu late transcription. Nucleic Acids Res 14:4881–4897
    [Google Scholar]
  15. Itaya M., Tanaka T. 1990; Gene-directed mutagenesis on the chromosome of Bacillus subtilis 168. Mol Gen Genet 223:268–272
    [Google Scholar]
  16. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  17. Lopilato J., Bortner S., Beckwith J. 1986; Mutations in a new chromosomal gene of Escherichia coli, pcn B, reduce plasmid copy number of pBR322 and its derivatives. Mol Gen Genet 205:285–290
    [Google Scholar]
  18. March P. 1992; Membrane-associated GTPases in bacteria. Mol Microbiol 6:1253–1257
    [Google Scholar]
  19. March P.E., Inouye M. 1985; Characterization of the lep operon of E. coli : identification of the promoter and the gene upstream of the signal peptidase. J Biol Chem 260:7206–7213
    [Google Scholar]
  20. Moran C. P., Lang N., LeGrice S.F.J., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186:339–346
    [Google Scholar]
  21. Saito H., Shibata T., Ando T. 1979; Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol Gen Genet 170:117–122
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Eaboratorj Manual, 2 nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  24. Schulz A., Schumann W. 1996; hrc A, the first gene of the Bacillus subtilis dna K operon encodes a negative regulator of class I heat-shock genes. J Bacteriol178 1088–1093
    [Google Scholar]
  25. Schulz A., Tzschaschel B., Schumann W. 1995; Isolation and analysis of mutants of the dna K operon of Bacillus subtilis. Mol Microbiol 15:421–429
    [Google Scholar]
  26. Takemura K. I., Sato T., Kobayashi Y. 1993 DNA sequence of the Ijs A-spo IIIC region of the Bacillus subtilis chromosome EMBL Database, accession no. D 17650
    [Google Scholar]
  27. Troup B., Jahn M., Hungerer C., Jahn D. 1994; Isolation of the hem F operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant. J Bacteriol 176:673–680
    [Google Scholar]
  28. Troup B., Hungerer C., Jahn D. 1995; Cloning and characterization of the Escherichia coli hem N gene encoding the oxygen- independent coproporphyrinogen III oxidase. J Bacteriol 3:3326–3331
    [Google Scholar]
  29. Wetzstein M., Völker U., Dedio J., Löbau S., Zuber Ü., Schiesswohl M., Herget C., Hecker M., Schumann W. 1992; Cloning, sequencing, and molecular analysis of the dna K locus from Bacillus subtilis. J Bacteriol 174:3300–3310
    [Google Scholar]
  30. Xu K., Elliott T. 1993; An oxygen-dependent copro- phorhyrinogen oxidase encoded by the hem F gene of Salmonella tjphimurium. J Bacteriol 175:4990–4998
    [Google Scholar]
  31. Xu K., Elliott T. 1994; Cloning, DNA sequence, and complementation analysis of the Salmonella tjphimurium hem N gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J Bacteriol 176:3196–3203
    [Google Scholar]
  32. Yuan G., Wong S. 1995; Isolation and characterization of Bacillus subtilis regulatory mutants : evidence for orf39 in the dna K operon as a repressor gene in regulating the expression of both gro E and dna K. J Bacteriol 177:6462–6468
    [Google Scholar]
  33. Zuber U., Schumann W. 1991; Tn5cos: a useful tool for restriction mapping of large plasmids. Gene 103:69–72
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1641
Loading
/content/journal/micro/10.1099/13500872-142-7-1641
Loading

Data & Media loading...

Most cited Most Cited RSS feed