1887

Abstract

Information on the molecular determinants of receptor recognition, membrane insertion and toxin pore-formation was sought by making 42 single and multiple substitutions of residues 312-314 (GYY), 367-370 (YRRP) and 438-441 (SGFS) in the insecticidal CrylAc δ-endotoxin by site-directed mutagenesis. These three regions correspond to three putative surface-exposed loops (loops 1, 2 and 3, respectively) in domain II of the δ-endotoxin, forming the molecular apex of the structure. All except mutants GFY (loop 1), YKRA, SRRA, YRKA (loop 2) and TGFS (loop 3) expressed δ-endotoxin protein at wild-type levels which was stable upon activation by gut extract or trypsin. Toxicity assays for all the fully stable mutants using larvae showed that G312, Y367, R368, R369, S438 and G439 are important for activity. Wild-type toxin was then labelled with [S]methionine and heterologous competition binding assays were carried out for all the mutants using brush border membrane vesicles prepared from midgut. Most and least conservative mutations of G439 and least conservative substitutions of Y367, R368 and R369 reduced the ability of the toxin to bind competitively. The most conservative mutation, S441T, gave significantly increased binding. These results suggested that these four residues play a role in the initial receptor binding step in the toxin mechanism. As no significant effect on binding affinity was observed in relatively non-toxic mutants in which residues G312 and S438 were mutated, we suggest that these residues are involved in the subsequent steps of membrane insertion and pore-formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1617
1996-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1617.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1617&mimeType=html&fmt=ahah

References

  1. Ahmad W., Ellar D. J. 1990; Directed mutagenesis of selected regions of a bacillus thuringiensis entomocidal protein. FEMS Microbiol Lett 68:97–104
    [Google Scholar]
  2. Almond B.D., Dean D. H. 1993; Structural stability of Bacillus thuringiensis delta-endotoxin homolog-scanning mutants determined by susceptibility to protease. Appl Environ Microbiol 59:2442–2448
    [Google Scholar]
  3. Aronson A. I., Wu D., Zhang C. 1995; Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J Bacteriol 177:4059–4065
    [Google Scholar]
  4. Bone E.J., Ellar D.J. 1989; Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett 58:171–178
    [Google Scholar]
  5. Bordo D., Argos P. 1991; Suggestions for ‘safe’ residue substitutions in site-directed mutagenesis. J Mol Biol 217:721–729
    [Google Scholar]
  6. Carroll J., Ellar D. J. 1993; An analysis of Bacillus thuringiensis 5- endotoxin action on insect-midgut-membrane permeability using a light-scattering assay. Eur J Biochem 214:771–778
    [Google Scholar]
  7. Choe S., Bennett M. J., Fujii G., Curmi P. M. G., Kantardjieff K. A., Collier R. J., Eisenberg D. 1992; The crystal structure of diphtheria toxin. Nature 357:216–222
    [Google Scholar]
  8. Cummings C.E., Ellar D. J. 1994; Chemical modification of Bacillus thuringiensis activated ¿-endotoxin and its effect on toxicity and binding to Manduca sexta midgut membranes. Microbiology 140:2737–2747
    [Google Scholar]
  9. Ellar D.J., Posgate J. A. 1974; Characterisation of forespores isolated from Bacillus megaterium at different stages of development into mature spores. In Spore Research 1973 pp. 21–40 Edited by Barker A. N., Gould G. W. , Wolf J. London: Academic Press;
    [Google Scholar]
  10. Finney D.J. 1952 Probit Analysis, 2nd edn. Edited by Finney D. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  11. Garczynski L. F., Crim J. W., Adang M. J. 1991; Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol 57:2816–2820
    [Google Scholar]
  12. Gazit E., Shai Y. 1993; Structural and functional characterisation of the a5 segment of Bacillus thuringiensis delta-endotoxin. Biochemistry 32:3429–3436
    [Google Scholar]
  13. Ge A. Z., Shivarova N. I., Dean D. H. 1989; Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. Proc Natl Acad Sci USA 86:4037–4041
    [Google Scholar]
  14. Ge A. Z., Rivers D., Milne R., Dean D. H. 1991; Functional domains of Bacillus thuringiensis insecticidal crystal proteins : refinement of Helio this virescens and Trichop lusia ni specificity domains on Cryl Ac.. J Biol Chem 266:17954–17958
    [Google Scholar]
  15. Hofmann C., Lüthy P., Hutter R., Pliska V. 1988a; Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem 173:85–91
    [Google Scholar]
  16. Hofmann C., Vanderbruggen H., Hofte H., Van Rie J., Jansens S., Van Mellaert H. 1988b; Specificity of Bacillus thuringiensis S- endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci USA 85:7844–7848
    [Google Scholar]
  17. Hofte H., Whiteley H. R. 1989; Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255
    [Google Scholar]
  18. Hsaio K.C. 1991; A fast and simple procedure for sequencing double stranded DNA with Sequenase.. Nucleic Acids Res 19:27–97
    [Google Scholar]
  19. Huber H.E., Lüthy P. 1981; Bacillus thuringiensis delta endotoxin : composition and activation. In Pathogenesis of Invertebrate Microbial Diseases pp. 209–234 Edited by Davidson E. D. Totowa, NJ: Allanheld, Osmum and Co;
    [Google Scholar]
  20. Knight P.J.K., Crickmore N., Ellar D. J. 1994; The receptor for Bacillus thuringiensis Cryl A(c) delta-endotoxin in the brush border membrane of the lepidopteran M. sexta is aminopeptidase N. Mol Microbiol 11:429–436
    [Google Scholar]
  21. Knight P.J.K., Knowles B. H., Ellar D. J. 1995; Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis Cryl A(c) toxin. J Biol Chem 270:17765–17770
    [Google Scholar]
  22. Knowles B.H., Ellar D. J. 1987; Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis S- endotoxins with different specificity. Biochim Biophys Acta 924:509–518
    [Google Scholar]
  23. Knowles B. H., Thomas W. E., Ellar D. J. 1984; Lectin-like binding of Bacillus thuringiensis var. kurstaki lepidopteran-specific toxin is an initial step in insecticidal action. FEBS Lett 168:197–202
    [Google Scholar]
  24. Knowles B. H., Knight P. J. K., Ellar D.J. 1991; N-Acetylgalactosamine is part of the receptor in insect gut epithelia that recognises an insecticidal protein from Bacillus thuringiensis. Proc R Soc Lond B 245:31–35
    [Google Scholar]
  25. Koller C. N., Bauer L. S., Hollingworth R. M. 1992; Characterisation of the pH-mediated solubility of Bacillus thuringiensis var. san diego native delta-endotoxin crystals. Biochem Biophys Res Commun 184:692–699
    [Google Scholar]
  26. Laemmli U.K., Favre M. 1973; Maturation of the head of bacteriophage T4. J Mol Biol 80:575–599
    [Google Scholar]
  27. Lee M. K., Milne R. E., Ge A. Z., Dean D. H. 1992; Location of Bombyx mori receptor binding region of a Bacillus thuringiensis delta-endotoxin. J Biol Chem 267:3115–3121
    [Google Scholar]
  28. Li J., Carroll J., Ellar D. J. 1991; Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353:815–821
    [Google Scholar]
  29. Lieberman H.R. 1983; Estimating LD50 using the probit technique: a basic computer program. Drug Chem Toxicol 6:111–116
    [Google Scholar]
  30. Lu H., Rajamohan F., Dean D. H. 1994; Identification of amino acid residues of Bacillus thuringiensis ¿-endotoxin Cryl Aa associated with membrane binding and toxicity to Bombyx mori. J Bacteriol 176:5554–5559
    [Google Scholar]
  31. Munson P.J., Rodbard D. 1980; Data analysis and curve fitting for ligand binding experiments. Anal Biochem 107:220–239
    [Google Scholar]
  32. Oddou P., Hartmann H., Geiser M. 1991; Identification and characterisation of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis delta-endotoxins. Eur J Biochem 202:673–680
    [Google Scholar]
  33. Parker M. W., Pattus F., Tucker A. D., Tsernoglou D. 1989; Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96
    [Google Scholar]
  34. Poitout S., Bues R. 1972; Nutrition des insects.. C R Acad Sci Ser DZIA3113–3115
    [Google Scholar]
  35. Rajamohan F., Alcantara E., Lee M. K., Chen X. J., Curtiss A., Dean D. H. 1995; Single amino acid changes in domain II of Bacillus thuringiensis Cryl Ab ¿-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J Bacteriol 177:2276–2282
    [Google Scholar]
  36. Sangadala S., Walters F. S., English L. H., Adang M. J. 1994; A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal Cryl Ac toxin binding and 86Rb+-K+ efflux in vitro. J Biol Chem 269:10088–10092
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  38. Schnepf H. E., Tomczak K., Ortega J. P., Whiteley H. R. 1990; Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J Biol Chem 265:20923–20930
    [Google Scholar]
  39. Shimizu T., Vassylyev D. G., Kido S., Doi Y., Morikawa K. 1994; Crystal structure of vitelline membrane outer layer protein I (VMO-I) : a folding motif with homologous Greek key structures related by an internal three-fold symmetry.. EMBO J 13:1003–1010
    [Google Scholar]
  40. Smith G.P., Ellar D. J. 1994; Mutagenesis of two surface- exposed loops of the Bacillus thuringiensis Cryl C ¿-endotoxin affects insecticidal specificity. Biochem J 302:611–616
    [Google Scholar]
  41. Tailor R., Tippett J., Gibb G., Pells S., Pike D., Jordan L., Ely S. 1992; Identification and characterisation of a novel Bacillus thuringiensis ¿-endotoxin entomocidal to coleopteran and lepido- pteran larvae. Mol Microbiol 6:1211–1217
    [Google Scholar]
  42. Thomas W.E., Ellar D. J. 1983; Bacillus thuringiensis var. israelensis crystal ¿-endotoxin : effects on insect and mammalian cells in vitro and in vivo. J Cell Sci 60:181–197
    [Google Scholar]
  43. Vadlamudi R. K., Ji T. H., Bulla L. A. 1993; A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J Biol Chem 286:12334–12340
    [Google Scholar]
  44. Van Rie J., Jansens S., Hofte H., Degheele D., Van Mellaert H. 1990; Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol 56:1378–1385
    [Google Scholar]
  45. Wolfersberger M., Lüthy P., Maurer A., Parenti P., Sacchi V. F., Goirdana B., Hanozet G. M. 1987; Preparation and partial characterisation of amino acid transporting brush border membrane vesicles from the larval midgut of the Cabbage butterfly (Pieris brassicae). Comp Biochem Physiol 86A:301–308
    [Google Scholar]
  46. Wu D., Aronson A. I. 1992; Localised mutagenesis defines regions of the Bacillus thuringiensis ¿-endotoxin involved in toxicity and specificity. J Biol Chem 267:2311–2317
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1617
Loading
/content/journal/micro/10.1099/13500872-142-7-1617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error