Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains Free

Abstract

Sakacin P is a small, heat-stable, ribosomally synthesized peptide produced by certain strains of . It inhibits the growth of several Gram-positive bacteria, including . A 7.6 kb chromosomal DNA fragment from Lb674 encompassing all genes responsible for sakacin P production and immunity was sequenced and introduced into strains Lb790 and Lb706X which are bacteriocin-negative and sensitive to sakacin P. The transformants produced sakacin P in comparable amounts to the parental strain, Lb674. The sakacin P gene cluster comprised six consecutive genes: and , all transcribed in the same direction. The deduced proteins SppK and SppR resembled the histidine kinase and response regulator proteins of bacterial two-component signal transducing systems of the AgrB/AgrA-type. The genes and encoded the sakacin P preprotein and the putative immunity protein, respectively. The predicted proteins SppT and SppE showed strong similarities to the proposed transport proteins of several other bacteriocins and to proteins implicated in the signal-sequence-independent export of haemolysin A. Deletion and frameshift mutation analyses showed that and were essential for sakacin P production in Lb706X. The putative SpiA peptide was shown to be involved in immunity to sakacin P. Analogues of and were found on the chromosomes of Lb706X and Lb790, indicating the presence of an incomplete gene cluster in these strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-6-1437
1996-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/6/mic-142-6-1437.html?itemId=/content/journal/micro/10.1099/13500872-142-6-1437&mimeType=html&fmt=ahah

References

  1. Aukrust T., Blom H. Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Ret Int 1992; 25:253–261
    [Google Scholar]
  2. Axelsson L., Hoick A. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 1995; 177:2125–2137
    [Google Scholar]
  3. Axelsson L.T., Ahrno S.E.I., Andersson M.C., Stähl S.R. Identification and cloning of a plasmid-encoded erythromycin resistance determinant from Lactobacillus reuteri. Plasmid 1988; 20:171–174
    [Google Scholar]
  4. Axelsson L., Hoick A., Birkeland S.E., Aukrust T., Blom H. Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol 1993; 59:2868–2875
    [Google Scholar]
  5. Van Belkum M.J., Stiles M.E. Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol 1995; 61:3573–3579
    [Google Scholar]
  6. Van Belkum M.J., Hayema B.J., Jeeninga R.E., Kok J., Venema G. Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl Environ Microbiol 1991; 57:492–498
    [Google Scholar]
  7. Blight M.A., Holland I.B. Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators. Mol Microbiol 1990; 4:873–880
    [Google Scholar]
  8. Brosius J., Palmer M.L., Kennedy P.J., Noller H.F. Complete nucleotide sequence of a 16S RNA gene from Escherichia coli. Proc Natl Acad Sei USA 1968; 75:4801–4805
    [Google Scholar]
  9. Brosius J., Dull T.J., Noller H.F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sei USA 1980; 77:201–204
    [Google Scholar]
  10. Chandler M.S., Morrison D.A. Competence for genetic transformation in Streptococcus pneumoniae: molecular cloning of com, a competence control locus. J Bacteriol 1987; 169:2005–2011
    [Google Scholar]
  11. Diep D.B., Hivarstein L.S., Nissen-Meyer J., Nes I.F. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum Cl 1, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 1994; 60:160–166
    [Google Scholar]
  12. Fath M.J., Kolter R. ABC transporters: bacterial exporters. Microbiol Rev 1993; 57:995–1071
    [Google Scholar]
  13. Felmlee T., Pellett S., Welch R.A. Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 1985; 163:94–105
    [Google Scholar]
  14. Fremaux C., Hächard Y., Cenatiempo Y. Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 1995; 141:1637–1645
    [Google Scholar]
  15. Hastings J.W., Sailer M., Johnson K., Roy K.L., Vederas J.C., Stiles M.E. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. I Bacteriol 1991; 173:7491–7500
    [Google Scholar]
  16. Hävarstein L.S., Diep D.B., Nes I.F. A family of ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 1995; 16:229–240
    [Google Scholar]
  17. Henderson J.T., Chopko A.L., Van Wassenaar P.D. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1'0. Arch Biochem Biophys 1992; 295:5–12
    [Google Scholar]
  18. Hillier A.J., Davidson B.E. Bacteriocins as food preservatives. Food Res Quart 1991; 51:60–64
    [Google Scholar]
  19. Hoick A., Axelsson L., Birkeland S.-E., Aukrust T., Blom H. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol 1992; 138:2715–2720
    [Google Scholar]
  20. Hoick A.L., Axelsson L., Hühne K., Kröckel L. Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol Lett 1994; 115:143–150
    [Google Scholar]
  21. Holo H., Nilssen O., Nes I.F. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris\ isolation and characterization of the protein and its gene. J Bacteriol 1991; 173:3879–3887
    [Google Scholar]
  22. Hui F.M., Morrison D.A. Genetic transformation in Streptococcus pneumoniae', nucleotide sequence analysis shows com A, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J Bacteriol 1991; 173:372–381
    [Google Scholar]
  23. Hui F.M., Zhou L., Morrison D.A. Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 1995; 153:25–31
    [Google Scholar]
  24. Klaenhammer T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 1993; 12:39–86
    [Google Scholar]
  25. Klein C., Kaletta C., Entian K.D. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 1993; 59:296–303
    [Google Scholar]
  26. Kornblum J., Kreiswirth B.N., Projan S.J., Ross H., Novick R.P. agr\ a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus. In Molecular Biology of the Staphylococci 1990 Edited by Novick R.P. New York: VCH; pp 373–402
    [Google Scholar]
  27. Mackman N., Nicaud J.M., Gray L., Holland I.B. Secretion of haemolysin by Escherichia coli. Curr Top Microbiol Immunol 1986; 125:159–181
    [Google Scholar]
  28. Marugg J.D., Gonzalez C.F., Kunka B.S., Ledeboer A.M., Pucci M.J., Toonen M.Y., Walker S.A., Zoetmulder L.C.M., Vandenbergh P.A. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PACTO. Appl Environ Microbiol 1992; 58:2360–2367
    [Google Scholar]
  29. Van Der Meer J.R., Polman J., Beerthuyzen M.M., Siezen R.J., Kuipers O.P., De Vos W.M. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 1993; 175:2578–2588
    [Google Scholar]
  30. Nissen-Meyer J., Larsen A.G., Sletten K., Daeschel M., Nes I.F. Purification and characterization of plantaricin A, a Eactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol 1993; 139:1973–1978
    [Google Scholar]
  31. Parkinson J.S., Kofoid E.C. Communication modules in bacterial signaling proteins. Annu Rev Genet 1992; 26:71–112
    [Google Scholar]
  32. Peng H.L., Novick R.P., Kreiswirth B., Kornblum J., Schlievert P. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 1988; 170:4365–4372
    [Google Scholar]
  33. Quadri L.E.N., Sailer M., Roy K.L., Vederas J.C., Stiles M.E. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem 1994; 269:12204–12211
    [Google Scholar]
  34. Quadri L.E.N., Sailer M., Terebiznik M.R., Roy K.L., Vederas J.C., Stiles M.E. Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J Bacteriol 1995; 177:1144–1151
    [Google Scholar]
  35. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning', a Eaboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  37. Schillinger U., Lucke F.K. Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 1989; 55:1901–1906
    [Google Scholar]
  38. Schnell N., Entian K., D.; Schneider U., Gûtz F., Zâhner H., Kellner R., Jung G. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 1988; 332:276–278
    [Google Scholar]
  39. Stock J.B., Ninfa A.J., Stock A.M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450–490
    [Google Scholar]
  40. Stoddard G.W., Petzel J.P., Van Belkum M.J., Kok J., McKay L.L. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol 1992; 58:1952–1961
    [Google Scholar]
  41. Tichaczek P.S., Nissen-Meyer J., Nes I.F., Vogel R.F., Hammes W.P. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from Lb sake LTH 673. System Appl Microbiol 1992; 15:460–468
    [Google Scholar]
  42. Tichaczek P.S., Vogel R.F., Hammes W.P. Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology 1994; 140:361–367
    [Google Scholar]
  43. Tinoco I. Jr, Borer P.N., Dengler B., Levine M. Improved estimation of secondary structure in ribonucleic acids. Nature 1973; 246:40–41
    [Google Scholar]
  44. Vandenbergh P.A. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 1993; 12:221–238
    [Google Scholar]
  45. Van Der Vossen J.M.B.M., Van Der Lelie D., Venema G. Isolation and characterization of Streptococcus cremoris Wg2-specific promotors. Appl Environ Microbiol 1987; 53:2452–2457
    [Google Scholar]
  46. Venema K., Kok J., Marugg J.D., Toonen M.Y., Ledeboer A.M., Venema G., Chikindas M.L. Functional analysis of the pediocin operon of Pediococcus acidilactici PACL0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 1995; 17:515–522
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-6-1437
Loading
/content/journal/micro/10.1099/13500872-142-6-1437
Loading

Data & Media loading...

Most cited Most Cited RSS feed