1887

Abstract

PFGE was used for the genomic analysis of different species and strains belonging to four out of the six recognized haloarchaeal (halobacterial) genera. All of them were found to carry one chromosome from 1.8-3 Mb, and usually several, but at least one, large plasmids of approximately 90-680 kb, which were detected in supercoiled and linear forms. From the data gathered, chromosomal size appears to be conserved at genus level, whereas plasmid composition and size seems to be subjected to certain variability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-6-1423
1996-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/6/mic-142-6-1423.html?itemId=/content/journal/micro/10.1099/13500872-142-6-1423&mimeType=html&fmt=ahah

References

  1. Antón J., López-García P., Abad J.P., Smith C.L., Amils R. Alignment of genes and Swal restriction sites to the Bata HI genomic map of Haloferax mediterranei. FEMS Microbiol Lett 1994; 117:53–60
    [Google Scholar]
  2. Bobovnikova V., Ng W.L., Das Sarma S., Hackett N.R. Restriction mapping the genome of Halobacterium halobium strain NRC-1. Syst Appl Microbiol 1994; 16:597–604
    [Google Scholar]
  3. Charlebois R.L., Schalkwyk L.C., Hofman J.D., Doolittle W.F. Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J Mol Biol 1991; 222:509–524
    [Google Scholar]
  4. Chu G., Vollrath D., Davies R.W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 1984; 234:1582–1585
    [Google Scholar]
  5. Cohen A., Lam W.L., Charlebois R., Doolittle W.F., Schalkwyk L.C. Localizing genes on the map of the genome of Haloferax volcanii, one of the Archaea. Proc Natl Acad Sci USA 1992; 89:1602–1606
    [Google Scholar]
  6. Cole S.T., 81 Saint Girons I. Bacterial genomics. FEMS Microbiol Rev 1994; 14:139–160
    [Google Scholar]
  7. Doolittle W.F. Genome structure in archaebacteria. In The Bacteria 1985 Edited by Woese C.R., Wolfe R.S. London: Academic Press; 8 pp 545–560
    [Google Scholar]
  8. Frantz B., Chakrabarty A.M. Degradative plasmid in Pseudomonas. In The Bacteria: The Biology of the Pseudomonads 1986 Edited by Sokatch J.R. New York: Academic Press; 10 pp 295–323
    [Google Scholar]
  9. Gutiérrez M.C., García M.T., Ventosa A., Nieto J.J., Rufz-Berraquero F. Occurrence of megaplasmids in halobacteria. J Appl Bacterial 1986; 61:67–71
    [Google Scholar]
  10. Hooykaas P.J.J. Tumorigenicity of Agrobacterium on plants. In Genetics of Bacterial Diversity 1989 Edited by Hopwood D.A., Chater K.F. London: Academic Press; pp 373–391
    [Google Scholar]
  11. Horne M., Englert C., Pfeiffer F. Two genes encoding gas vacuole proteins in Halobacterium halobium. Mol Gen Genet 1989; 213:459–464
    [Google Scholar]
  12. Horne M., Englert C., Wimmer C., Pfeiffer F. A DNA region of 9 kb contains all genes necessary for gas vesicle synthesis in halophilic halobacteria. Mol Microbiol 1991; 5:1159–1174
    [Google Scholar]
  13. Johnston A.W.B. The symbiosis between Rhiqobium and legumes. In Genetics of Bacterial Diversity 1989 Edited by Hopwood D.A., Chater K.F. London: Academic Press; pp 393–438
    [Google Scholar]
  14. Juez G. Taxonomy of extremely halophilic archaebacteria. In Halophilic Bacteria 1988 Edited by Rodriguez-Valera F. Boca Raton, Florida: CRC Press; 2 pp 3–24
    [Google Scholar]
  15. Kamekura M., Dyall-Smith M.L. Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 1995; 41:333–350
    [Google Scholar]
  16. Kinashi H., Shimaji-Murayama M., Hanafusa T. Integration of SCP1, a giant linear plasmid, into the Streptomyces coelicolor chromosome. Gene 1992; 115:35–42
    [Google Scholar]
  17. Krawiec S., Riley M. Organization of the bacterial chromosome. Microbiol Rev 1990; 54:502–539
    [Google Scholar]
  18. López-García P., Abad J.P., Smith C.L., Amils R. Genomic organization of the halophilic archaeon Haloferax mediterranei: physical map of the chromosome. Nucleic Acids Res 1992; 20:2459–2464
    [Google Scholar]
  19. López-García P., Abad J.P., Amils R. Genome analysis of different Haloferax mediterranei strains using pulsed-field gel electrophoresis. Syst Appl Microbiol 1993; 16:310–321
    [Google Scholar]
  20. López-García P., Antón J., Abad J.P., Amils R. Halobacterial megaplasmids are negatively supercoiled. Mol Microbiol 1994; 11:421–427
    [Google Scholar]
  21. Ng W.L., Kothakota S., DasSarma S. Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. J Bacteriol 1991; 173:1958– 1964
    [Google Scholar]
  22. Pfeiffer F. Genetics of halobacteria. In Halophilic Bacteria 1988 Edited by Rodriguez-Valera F. Boca Raton, Florida: CRC Press; 2 pp 105–133
    [Google Scholar]
  23. Rodríguez-Valera F., Juez G., Kushner D.J. Halobacterium mediterranei sp nov, a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 1983; 4:369–381
    [Google Scholar]
  24. Saint Jean A., Trieselmann B.A., Charlebois R.L. Physical map and set of overlapping cosmid clones representing the genome of the archaeon Halobacterium sp GRB. Nucleic Acids Res 1994; 22:1476–1483
    [Google Scholar]
  25. Schalkwyk L.C. Halobacterial genes and genomes. In The Biochemistry of Archaea (Archaebacteria) 1993 Edited by Kates M., Kushner D.J., Matheson A.T. Amsterdam: Elsevier; pp 467–496
    [Google Scholar]
  26. Schwartz D.C., Cantor C.R. Separation of yeast chromosome-sized DNAs by pulsed field gel electrophoresis. Cell 1984; 37:67–75
    [Google Scholar]
  27. Smith C.L., Condemine G. New approaches for physical mapping of small genomes. J Bacteriol 1990; 172:1167–1172
    [Google Scholar]
  28. Smith C.L., Klco S., R. & Cantor C.R. Pulsed-field gel electrophoresis and the technology of large DNA molecules. In Genome Analysis: A Practical Approach 1988 Edited by Davies K. Oxford: IRL Press; pp 41–72
    [Google Scholar]
  29. Stouthamer A.H., Kooijman S.A.L.M. Why it pays for bacteria to delete disused DNA and to maintain megaplasmids. Antonie Leeuwenhoek 1993; 63:39–43
    [Google Scholar]
  30. Tindall B.J. Cultivation and preservation of members of the family Halobacteriaceae. World J Microbiol Biotechnol 1991; 7:95–98
    [Google Scholar]
  31. Torreblanca M., Rodríguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipids pattern and description of Haloarcula gen nov and Haloferax gen nov. Syst Appl Microbiol 1986; 8:89–99
    [Google Scholar]
  32. Trincone A., Nicolaus B., Lama L., De Rosa M., Gambacorta A., Grant W.D. The glycolipid of Halobacterium sodomense. J Gen Microbiol 1990; 136:2327–2331
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-6-1423
Loading
/content/journal/micro/10.1099/13500872-142-6-1423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error