1887

Abstract

This study describes the purification and immunochemical characterization of a major 23 kDa cytosolic protein antigen of the vaccine candidate (TMC 5135). The 23 kDa protein alone was salted out from the cytosol at an ammonium sulfate saturation of 80-95%. It represented about 1.5% of the total cytosolic protein, appeared glycosylated by staining with periodic acid/Schiff's reagent, and showed a pl of approximately 5.3. Its native molecular mass was determined as approximately 48 kDa, suggesting a homodimeric configuration. Immunoblotting with the WHO-IMMLEP/IMMTUB mAbs mc5041 and IT61 and activity staining after native PAGE established its identity as a mycobacterial superoxide dismutase (SOD) of the Fe/Mn type. The sequence of the 18 N-terminal amino acids, which also contained the binding site for mc5041, showed a close resemblance, not only with the reported deduced sequences of and Fe/MnSODs, but also with human MnSOD. In order to study its immunopathological relevance, the protein was subjected to and assays for T cell activation. It induced, in a dose-related manner, skin delayed hypersensitivity in guinea-pigs and lymphocyte proliferation in BALB/c mice primed with . Most significantly, it also induced lymphocyte proliferative responses, in a manner analogous to , in human subjects comprising tuberculoid leprosy patients and healthy contacts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-6-1375
1996-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/6/mic-142-6-1375.html?itemId=/content/journal/micro/10.1099/13500872-142-6-1375&mimeType=html&fmt=ahah

References

  1. Amano A., Sharma A., Sojar H.T., Kutramitsu H.K., Genco R.J. Effects of temperature stress on expression of fimbriae and superoxide dismutase by Porphyromonas gingivalis. Infect Immun 1994; 62:4682–4685
    [Google Scholar]
  2. Barra D., Schinina M.E., Simmaco M., Bannister J.V., Bannister W., H.; Rotilio G., Bossa F. The primary structure of human liver manganese superoxide dismutase. J Biol Chem 1984; 259:12595–12601
    [Google Scholar]
  3. Beaman L., Beaman B.L. The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annu Rep Microbiol 1984; 38:27–48
    [Google Scholar]
  4. Beaman B.L., Scates S.M., Moring S.E., Deen R., Misra H.P. Purification and properties of a unique superoxide dismutase from Nocardia asteroides. J Biol Chem 1982; 258:91–96
    [Google Scholar]
  5. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44:276–287
    [Google Scholar]
  6. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Cab Invest 1968; 21: (Suppl) 77–89
    [Google Scholar]
  7. Brodie A.F., Kalra V.K., Lee S.H., Cohen N.S. Properties of energy transducing system in different types of membrane preparations from Mycobacterium phlei - preparation, resolution and reconstitution. Methods Ensymol 1979; 55:175–199
    [Google Scholar]
  8. Convit J., Sampson C., Zuniga N., Smith P.G., Plata J., Silva J., Molina J., Pinardi M.E., Bloom B.R., Salgado A. Immunoprophylactic trial with combined Mycobacterium leprae/ BCG vaccine against leprosy: preliminary results. Lancet 1992; 339:446–450
    [Google Scholar]
  9. Cooper J.B., McIntyre K., Badasso M.O., Wood S.P., Zhang Y., Garbe T.R., Young D. X-ray structure analysis of the iron dependent superoxide dismutase from Mycobacterium tuberculosis at 2'0 A resolution reveals novel dimer-dimer interactions. J Mol Biol 1995; 246:531–544
    [Google Scholar]
  10. Dobos K.M., Sniderek K., Khoo K.-H., Brennan P.J., Bel isle J.T. Evidence for glycosylation sites on the 45 kDa glycoprotein of Mycobacterium tuberculosis. Infect Immun 1995; 63:2846–2853
    [Google Scholar]
  11. Dunbar B.S., Kimura H., Timmons T.M. Protein analysis using high-resolution two-dimensional polyacrylamide gel electrophoresis. Methods Enzymol 1990; 182:441–459
    [Google Scholar]
  12. Espitia C., Espinosa R., Saavedra R., Mancilla R., Romain F., Laqueyrerie A., Moreno C. Antigenic and structural similarities between Mycobacterium tuberculosis 50- to 55-kilodalton and M. bovis BCG 45- to 47-kilodalton antigens. Infect Immun 1995; 63:580–584
    [Google Scholar]
  13. Fine P.E.M., Rodriguez L.C. Modern vaccines: mycobacterial diseases. Lancet 1990; 335:1016–1020
    [Google Scholar]
  14. Fridovich I. Superoxide dismutases. Adv Ensçymol 1986; 58:61–97
    [Google Scholar]
  15. Gelber R.H., Mehra V., Bloom B., Murray L.P., Siu P., Tsang M., Brennan P.J. Vaccination with pure Mycobacterium leprae protein inhibits M leprae multiplication in mouse foot pads. Infect Immun 1994; 62:4250–4255
    [Google Scholar]
  16. Germain R.N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994; 76:287–299
    [Google Scholar]
  17. Gupta H.P., Singh N.B., Mathur I.S., Gupta S.K. Mycobacterium habana, a new immunogenic strain in experimental tuberculosis. Indian J Exp Biol 1979; 17:1190–1193
    [Google Scholar]
  18. Ishioka G.Y., Lamont A.G., Thomson D., Bulbow A., Gaeta F.C.A., Sette A., Grey H.M. MHC interaction and T cell recognition of carbohydrate and glycopeptides. J Immunol 1992; 148:2446–2451
    [Google Scholar]
  19. Jabusch J.R., Forb D.L., Kerschensteiner D.A., Deutsch H.F. Some sulfhydryl properties and primary structure of human erythrocyte superoxide dismutase. Biochemistry 1980; 19:2310–2319
    [Google Scholar]
  20. Julius M., Simpson E., Herzenberg L. A rapid method for isolation of functional thymus derived murine lymphocytes. Eur J Immunol 1973; 3:645–649
    [Google Scholar]
  21. Khanolkar S.R., Mackenzie C.D., Lucas S.B., Hussen A., Girdhar B.K., Katoch K., McAdam K.P.W.J. Identification of Mycobacterium leprae antigens in tissues of leprosy patients using monoclonal antibodies. Int J Lepr 1989; 57:652–658
    [Google Scholar]
  22. Khanolkar-Young S. Results of the third immunology of leprosy/immunology of tuberculosis antimycobacterial monoclonal antibody workshop. Infect Immun 1992; 60:3925–3927
    [Google Scholar]
  23. Kusunose E., Ichihara K., Noda Y., Kusunose M. Superoxide dismutase from Mycobacterium tuberculosis. J Biochem 1976; 80:1343–1352
    [Google Scholar]
  24. Kusunose E., Kusunose M., Ichihara K., Izumi S. Superoxide dismutase in cell free extracts from Mycobacterium leprae grown in armadillo liver. FEMS Microbiol Lett 1981; 10:49–52
    [Google Scholar]
  25. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  26. Lamb F.I., Singh N.B., Colston M.J. The specific 18 kilodalton antigen of Mycobacterium leprae is present in Mycobacterium habana and functions as a heat-shock protein. J Immunol 1990; 144:1922–1925
    [Google Scholar]
  27. Leach B.S., Collawn J.F. Jr, Fish W.W. Behavior of glycoproteins with empirical molecular weight estimation methods. In sodium dodecyl sulfate biochemistry 1980; 19:5734–5741
    [Google Scholar]
  28. Markwell M.A.K., Haas S.M., Bieber L.L., Tolbert N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 1978; 87:206–210
    [Google Scholar]
  29. Matsudaira P. Sequence from picomole quantities of protein electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 1987; 262:10035–10038
    [Google Scholar]
  30. Meier B., Barra D., Bossa F., Calabrese L., Rotilio G. Synthesis of either Fe or Mn superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied. J Biol Chem 1982; 257:13977–13980
    [Google Scholar]
  31. Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991; 288:481–487
    [Google Scholar]
  32. Ridley D.S., Jopling W.H. Classification of leprosy according to immunity: a five group system. Int J Lepr 1966; 34:255–273
    [Google Scholar]
  33. Scopes R.K. Separation by precipitation: salting out at high salt concentration. In Protein Purification: Principles and Practice 1987 New York: Springer-Verlag; pp 43–52
    [Google Scholar]
  34. Singh N.B., Lowe A.C.R.E., Rees R.J.W., Colston M.J. Vaccination of mice against Mycobacterium leprae infection. Infect Immun 1989; 57:653–655
    [Google Scholar]
  35. Singh N.B., Srivastava A., Gupta Ashok H.P., Srivastava S. Induction of lepromin positivity in monkeys by a candidate antileprosy vaccine: Mycobacterium habana. Int J Lepr 1992; 59:317–320
    [Google Scholar]
  36. Sinha S., Sreevatsa Gupta S.K., Sengupta U. Comparative study of immunizing and delayed hypersensitivity eliciting antigens of Mycobacterium leprae, M tuberculosis, M vaccae, and M bovis BCG. Int J Lepr 1987; 55:42–53
    [Google Scholar]
  37. Spiegelhalder C., Gerstenecker B., Kersten A., Schütz E., Kist M. Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect Immun 1993; 61:5315–5325
    [Google Scholar]
  38. Takao M., Yasui A., Oikawa A. Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J Biol Chem 1991; 266:14151–14154
    [Google Scholar]
  39. Thangaraj H.S., Lamb F.I., Davis E.O., Colston M.J. Nucleotide and deduced amino acid sequence of Mycobacterium leprae manganese superoxide dismutase. Nucleic Acids Res 1989; 17:8378
    [Google Scholar]
  40. Thangaraj H.S., Lamb F.I., Davis E.O., Jenner P.J., Jeyakumar L.H., Colston M.J. Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen. Infect Immun 1990; 58:1937–1942
    [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sei USA 1979; 76:4350–4354
    [Google Scholar]
  42. Weiss R. On the track of‘killer’ TB. Science 1992; 235:148–150
    [Google Scholar]
  43. Wheeler P.R., Gregory D. Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. J Gen Microbiol 1980; 121:457–464
    [Google Scholar]
  44. WHO Sixth Report of the WHO Expert Committee on Leprosy 1988 Technical Report Series no. 768
    [Google Scholar]
  45. Wray W., Boulikas T., Wray V.P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem 1981; 118:197–203
    [Google Scholar]
  46. Young D.B., Cole S.T. Leprosy, tuberculosis, and new genetics. J Bacteriol 1993; 175:1–6
    [Google Scholar]
  47. Young D.B., Fohn M.J., Khanolkar S.R., Buchanan T.M. Monoclonal antibodies to a 28 kD protein antigen of Mycobacterium leprae. Clin Exp Immunol 1985; 60:546–562
    [Google Scholar]
  48. Young D., Lathigra R., Hendrix R., Sweetser D., Young R.A. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sei USA 1988; 85:4267–4270
    [Google Scholar]
  49. Young D., Hermans P.M.W., Kaufmann S.H.E., Thole J.E.R. Mycobacterial protein antigens: a compilation. Mol Microbiol 1992; 6:153–163
    [Google Scholar]
  50. Zhang Y., Lathigra R., Garbe T., Catty D., Young D. Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Mol Microbiol 1991; 5:381–391
    [Google Scholar]
  51. Zolg J.W., Philippi-Schulz S. The superoxide dismutase gene. A target for detection and identification of mycobacteria by PCR. J Clin Microbiol 1994; 32:2801–2812
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-6-1375
Loading
/content/journal/micro/10.1099/13500872-142-6-1375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error