The regulation of antibiotic production in Streptomyces coelicolor A3(2) Free

Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-6-1335
1996-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/6/mic-142-6-1335.html?itemId=/content/journal/micro/10.1099/13500872-142-6-1335&mimeType=html&fmt=ahah

References

  1. Adamidis T., Champness W. Genetic analysis of absB, a Streptomyces coelicolor locus involved in global antibiotic regulation. J Bacteriol 1992; 174:4622–4628
    [Google Scholar]
  2. Adamidis T., Riggle P., Champness W.C. Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol 1990; 172:2962–2969
    [Google Scholar]
  3. Anisova L.N., Blinova I.N., Efremenkova O.V., Kozmin Yu P., Onoprienko V.V., Smirnova G.M., Khokhlov A.S. Regulators of the development of Streptomyces coelicolor A3(2). I%y Akad Nauk SSSR Ser Biol 1984; 1:98–108
    [Google Scholar]
  4. Bérdy J. New ways to obtain antibiotics. Chin J Antibiot 1984; 7:272–290
    [Google Scholar]
  5. Bibb M.J., Cohen S.N. Gene expression in Streptomyces'. construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet 1982; 187:265–277
    [Google Scholar]
  6. Bibb M.J., Hopwood D.A. Genetic studies of the fertility plasmid SCP2 and its SCP2* variants in Streptomyces coelicolor A3(2). J Gen Microbiol 1981; 126:427–442
    [Google Scholar]
  7. Bibb M.J., Freeman R.F., Hopwood D.A. Physical and genetical characterisation of a second sex factor, SCP2, for Streptomyces coelicolor. Mol Gen Genet 1977; 154:155–166
    [Google Scholar]
  8. Bibb M.J., Ward J.M., Hopwood D.A. Transformation of plasmid DNA into Streptomyces at high frequency. Nature 1978; 274:398–400
    [Google Scholar]
  9. Bibb M.J., Schottel J.L., Cohen S.N. A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces. Nature 1980; 284:526–531
    [Google Scholar]
  10. Bibb M.J., Ward J.M., Kieser T., Cohen S.N., Hopwood D.A. Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet 1981; 184:230–240
    [Google Scholar]
  11. Bibb M., J., Findlay P.R., Johnson M.W. The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein coding sequences. Gene 1984; 30:157–166
    [Google Scholar]
  12. Bibb M.J., Ward J.M., Cohen S.N. Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Mol Gen Genet 1985a; 199:26–36
    [Google Scholar]
  13. Bibb M.J., Janssen G.R., Ward J.M. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 1985b; 41:E357–E368
    [Google Scholar]
  14. Bibb M.J., White J., Ward J.M., Janssen G.R. The mRNA for the 23 S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 1994; 14:533–545
    [Google Scholar]
  15. Boylan S.A., Redfield A.R., Price C.W. Transcription factor tb of Bacillus subtilis controls a large stationary phase regulon. J Bacteriol 1993; 175:3957–3963
    [Google Scholar]
  16. Braña A.F., Méndez G., Díaz L.A., Manzanal M.B., Hardisson C. Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J Gen Microbiol 1986; 132:1319–1326
    [Google Scholar]
  17. Brasch M.A., Cohen S.N. Excisive recombination of the SLP1 element in Streptomyces lividans is mediated by int and enhanced by xis. J Bacteriol 1993; 175:3075–3082
    [Google Scholar]
  18. Brown K.L., Wood S., Buttner M.J. Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2) - renaturation of a sigma-subunit using GroEL. Mol Microbiol 1992; 6:1133–1139
    [Google Scholar]
  19. Buttner M.J. RNA polymerase heterogeneity in Streptomyces coelicolor A3(2). Mol Microbiol 1989; 3:1653–1659
    [Google Scholar]
  20. Buttner M.J., Lewis C.G. Construction and characterization of Streptomyces coelicolor A3(2) mutants that are multiply deficient in the nonessential hrd-encoded RNA polymerase sigma factors. J Bacteriol 1992; 174:5165–5167
    [Google Scholar]
  21. Buttner M.J., Fearnley I.M., Bibb M.J. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet 1987; 209:101–109
    [Google Scholar]
  22. Buttner M.J., Smith A.M., Bibb M.J. At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell 1988; 52:599–607
    [Google Scholar]
  23. Buttner M., J., Chater K.F., Bibb M.J. Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J Bacteriol 1990; 172:3367–3378
    [Google Scholar]
  24. Chakraburtty R., White J., Takano E., Bibb M.J. Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) from Streptomyces coelicolor A3(2). Mol Microbiol 1996; 19:357–368
    [Google Scholar]
  25. Champness W.C., Chater K.F. Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. In Regulation of Bacterial Differentiation 1994 Edited by Piggot P.J., Moran C.P. Jr, Youngman P. Washington, DC: American Society for Microbiology; pp 61–93
    [Google Scholar]
  26. Champness W.G., Riggle P., Adamidis T., Vandervere P. Identification of Streptomyces coelicolor genes involved in regulation of antibiotic synthesis. Gene 1992; 115:55–60
    [Google Scholar]
  27. Chater K.F. The improving prospects for yield increase by genetic engineering in antibiotic-producing streptomycetes. Bio/ Technology 1990; 8:115–121
    [Google Scholar]
  28. Chater K.F. Genetics of differentiation in Streptomyces. Annu Rep Microbiol 1993; 47:685–713
    [Google Scholar]
  29. Chater K.F., Bibb M.J. Regulation of bacterial antibiotic production. In Products of Secondary Metabolism 1996 Edited by (Biotechnology, vol) Kleinkauf H., Von Dohren H. Weinheim: VCH; 6 pp (in press) 1
    [Google Scholar]
  30. Chater K.F., Bruton C.J. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 1985; 4:1892–1893
    [Google Scholar]
  31. Chater K.F., Hopwood D.A. Streptomyces. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry 1993 Edited by Sonenshein A.L., Hoch J.A., Losick R. Washington, DC: American Society for Microbiology; Physiology, and Molecular Genetics, pp 83–89
    [Google Scholar]
  32. Chater K.F., Losick R. The mycelial life-style of Streptomyces coelicolor A3(2) and its relatives. In Bacteria as Multicellular Organisms 1996 Edited by Shapiro J.H., Dworkin M. New York: Oxford University Press; pp (in press) 1
    [Google Scholar]
  33. Chater K.F., Bruton C.J., Plaskitt K.A., Buttner M.J., Méndez C., Helmann J. The developmental fate of S coelicolor hyphae depends upon a gene product homologous with the motility a factor of B subtilis. Cell 1989; 59:133–143
    [Google Scholar]
  34. Demain A.L. Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. Ciba Found Symp 1992; 171:3–23
    [Google Scholar]
  35. Demain A.L., Fang A. Emerging concepts of secondary metabolism in actinomycetes. Actinomycetological 1995; 9:98–117
    [Google Scholar]
  36. Demain A.L., Aharonowitz Y., Martín J.-F. Metabolic control of secondary biosynthetic pathways. In Biochemistry and Genetic Regulation of Commercially Important Antibiotics 1983 Edited by Vining L.C. London: Addison-Wesley; pp 49–72
    [Google Scholar]
  37. Efremenkova O.V., Anisova L.N., Bartoshevich Y.E. Regulators of differentiation in actinomycetes. Antibiot Med Bio-tekhnol 1985; 9:687–707
    [Google Scholar]
  38. Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 1993; 57:1–33
    [Google Scholar]
  39. Fernández-Moreno M.A., Caballero J.L., Hopwood D.A., Malpartida F. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bid A transfer RNA gene of Streptomyces. Cell 1991; 66:769–780
    [Google Scholar]
  40. Fernández-Moreno M.A., Martfn-Triana A.J., Martínez E., Niemi J., Kieser H.M., Hopwood D.A., Malpartida F. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J Bacteriol 1992; 174:2958–2967
    [Google Scholar]
  41. Floriano B., Bibb M.J. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 1996 (in press)
    [Google Scholar]
  42. Fox G.E., Stackebrandt E. The application of 16S rRNA cataloguing and 5S rRNA sequencing in bacterial systematics. Methods Microbiol 1987; 19:405–458
    [Google Scholar]
  43. Fujii T., Takano E., Gramajo H.C., Bibb M.J. redD and ¿zr/II-ORF4, pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2), are transcribed in vitro by an RNA polymerase holoenzyme containing the non-essential a factor, erhrdD. J Bacteriol 1996; 178: (in press)
    [Google Scholar]
  44. Fuqua W.C., Winans S.C., Greenberg E.P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176:269–275
    [Google Scholar]
  45. Gentry D.R., Hernandez V.J., Nguyen L.H., Jensen D.B., Cashel M. Synthesis of the stationary-phase sigma factor F is positively regulated by ppGpp. J Bacteriol 1993; 175:7982–7989
    [Google Scholar]
  46. Goodfellow M., Cross T. Classification. In The Biology of Actinomycetes 1984 Edited by Goodfellow M., Mordarski M., Williams S.T. London: Academic Press; pp 7–164
    [Google Scholar]
  47. Goodfellow M., Ferguson E.V., Sanglier J.J. Numerical classification and identification of Streptomyces species - a review. Gene 1992; 115:225–233
    [Google Scholar]
  48. Gramajo H.C., Takano E., Bibb M.J. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 1993; 7:837–845
    [Google Scholar]
  49. Hara O., Beppu T. Mutants blocked in streptomycin production in Streptomyces griseus - the role of A-factor. J Antibiot 1982; 35:349–358
    [Google Scholar]
  50. Hara O., Horinouchi S., Uozumi T., Beppu T. Genetic analysis of A-factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J Gen Microbiol 1983; 129:2939–2944
    [Google Scholar]
  51. Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E coli. Cell 1993; 72:165–168
    [Google Scholar]
  52. Hernandez V.J., Bremer H. Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB PI promoter activity in Escherichia coli. J Biol Chem 1990; 265:11605–11614
    [Google Scholar]
  53. Hernandez V.J., Bremer H. Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. J Biol Chem 1993; 268:10851–10862
    [Google Scholar]
  54. Hobbs G., Obanye A.I.C., Petty J., Mason J.G., Barratt E., Gardner D.C.J., Flett F., Smith C.P., Broda P., Oliver S.G. An integrated approach to studying regulation of production of the antibiotic methylenomycin by Streptomyces coelicolor A3(2). J Bacteriol 1992; 174:1487–1494
    [Google Scholar]
  55. Hodgson D.A. Differentiation in actinomycetes. Symp Soc Gen Microbiol 1992; 47:407–440
    [Google Scholar]
  56. Hong S.K., Kito M., Beppu T., Horinouchi S. Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). Bacterial 1991; 113:2311–2318
    [Google Scholar]
  57. Hood D.W., Heidstra R., Swoboda U.K., Hodgson D.A. Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2) - interaction between primary and secondary metabolism - a review. Gene 1992; 115:5–12
    [Google Scholar]
  58. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. Genetic Manipulation of Streptomyces: a Eaboratory Manual 1985a Norwich: John Innes Foundation;
    [Google Scholar]
  59. Hopwood D.A., Malpartida F., Kieser H.M., Ikeda H., Duncan J., Fujii I., Rudd B.A.M., Floss H.G., Omura S. Production of ‘ hybrid ’ antibiotics by genetic engineering. Nature 1985b; 314:642–644
    [Google Scholar]
  60. Hopwood D.A., Bibb M.J., Kieser T., Chater K.F. Plasmid and phage vectors for gene cloning and analysis in Streptomyces. Methods Enzmol 1987; 153:116–166
    [Google Scholar]
  61. Hopwood D.A., Chater K.F., Bibb M.J. Genetics of antibiotic production in Streptomyces coelicolor A3(2). In Genetics and Biochemistry of Antibiotic Production 1995 Edited by Vining L.C., Stuttard C. Newton, MA: Butterworth-Heinemann; pp 65–102
    [Google Scholar]
  62. Horinouchi S. ‘Eucaryotic’ signal transduction systems in the bacterial genus Streptomyces. Actinomycetologica 1993; 1:68–87
    [Google Scholar]
  63. Horinouchi S., Beppu T. Autoregulatory factors and communication in actinomycetes. Annu Rev Microbiol 1992; 46:377–398
    [Google Scholar]
  64. Horinouchi S., Beppu T. Autoregulators. In Genetics and Biochemistry of Antibiotic Production 1995 Edited by Vining L.C., Stuttard C. Newton, MA: Butterworth-Heinemann; pp 103–119
    [Google Scholar]
  65. Horinouchi S., Hara O., Beppu T. Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Bacteriol 1983; 155:1238–1248
    [Google Scholar]
  66. Horinouchi S., Kito M., Nishiyama M., Furuya K., Hong S.K., Miyake K., Beppu T. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene 1990; 95:49–56
    [Google Scholar]
  67. Ishizuka H., Horinouchi S., Kieser H.M., Hopwood D.A., Beppu T. A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. T Bacteriol 1992; 174:7585–7594
    [Google Scholar]
  68. Janssen G.R. Eubacterial, archaebacterial, and eukaryotic genes that encode leaderless mRNA. In Industrial Microorganisms: Basic and Applied Molecular Genetics 1993 Edited by Baltz R.H., Hegeman G.D., Skatrud P.L. Washington, DC: American Society for Microbiology; pp 59–67
    [Google Scholar]
  69. Janssen G.R., Bibb M.J. Tandem promoters transcribe the thiostrepton resistance gene from Streptomyces azureus and the viomycin resistance gene from Streptomyces vinaceus. In Biology of Actinomycetes 88 1988 Edited by Okami Y., Beppu T., Ogawara H. Tokyo: Japan Scientific Societies Press; pp 374–379
    [Google Scholar]
  70. Janssen G.R., Bibb M.J. Tandem promoters, tsrpl and tsrp>2, direct transcription of the thiostrepton resistance gene (tsr) of Streptomyces azureus: transcriptional initiation from tsrfl occurs after deletion of the -35 region. Mol Gen Genet 1990; 221:339–346
    [Google Scholar]
  71. Janssen G.R., Ward J.M., Bibb M.J. Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene (aph) from Streptomyces fradiae. Genes Dev 1989; 3:415–429
    [Google Scholar]
  72. Khokhlov A.S., Tovarova I., !., Borisova L.N., Pliner S.A., Schevchenko L.A., Kornitskaya E.Y., Ivkina N.S., Rapoport I.A. A-factor responsible for the production of streptomycin by a mutant strain of Actinomyces streptomycini. Dokl Akad Nauk m 1967; 177:232–235
    [Google Scholar]
  73. Kieser H.M., Kieser T., Hopwood D.A. A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 1992; 174:5496–5507
    [Google Scholar]
  74. Kinashi H., Shimaji-Murayama M. Physical characterization of SCP1, a giant linear plasmid from Streptomyces coelicolor. J Bacteriol 1991; 113:1523–1529
    [Google Scholar]
  75. Kirby R., Hopwood D.A. Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 1977; 98:229–252
    [Google Scholar]
  76. Lawlor E.J., Baylis H.A., Chater K.F. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1987; 1:1305–1310
    [Google Scholar]
  77. Leskiw B.K., Bibb M.J., Chater K.F. The use of a rare codon specifically during development. Mol Microbiol 1991a; 5:2861–2867
    [Google Scholar]
  78. Leskiw B.K., Lawlor E.J., Fernandez-Abalos J.M., Chater K.F. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci USA 1991b; 88:2461–2465
    [Google Scholar]
  79. Leskiw B.K., Mah R., Lawlor E.J., Chater K.F. Accumulation of bid A-specified transfer RNA is temporally regulated in Streptomyces coelicolor A3(2). J Bacteriol 1993; 175:1995–2005
    [Google Scholar]
  80. Lin Y.-S., Kieser H.M., Hopwood D.A., Chen C.W. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 1993; 10:923–933
    [Google Scholar]
  81. Loewen P.C., Hengge-Aronis R. The role of the sigma factor o3 (KatF) in bacterial global regulation. Annu Rev Microbiol 1994; 48:53–80
    [Google Scholar]
  82. Lonetto M.A., Brown K.L., Rudd K.E., Buttner M.J. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase a factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA 1994; 91:7573–7577
    [Google Scholar]
  83. McCarthy A.J., Williams S.T. Actinomycetes as agents of biodégradation in the environment - a review. Gene 1992; 115:189–192
    [Google Scholar]
  84. Malpartida F., Hopwood D.A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 1984; 309:462–464
    [Google Scholar]
  85. Martin J.F., McDaniel L.E. Kinetics of biosynthesis of polyene macrolide antibiotics in batch cultures: cell maturation time. Biotechnol Bioeng 1975; 17:925–938
    [Google Scholar]
  86. Matsumoto A., Ishizuka H., Beppu T., Horinouchi S. Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3(2). Actinomycetologica 1995; 9:37–43
    [Google Scholar]
  87. Méndez C., Braña A.F., Manzanal M.B., Hardisson C. Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 1985; 31:446–450
    [Google Scholar]
  88. Miyadoh S. Research on antibiotic screening in Japan over the last decade: a producing microorganisms approach. Actinomycetologica 1993; 7:100–106
    [Google Scholar]
  89. Msadek T., Kunst F., Rapoport G. Two-component regulatory systems. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry 1993 Edited by Sonenshein A.L., Hoch J.A., Losick R. Washington, DC: American Society for Microbiology; Physiology, and Molecular Genetics, pp 729–745
    [Google Scholar]
  90. Narva K.E., Feitelson J.S. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol 1990; 172:326–333
    [Google Scholar]
  91. Ochi K. A relaxed (reI) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin. J Gen Microbiol 1990; 136:2405–2412
    [Google Scholar]
  92. Olukoshi E.R., Packter N.M. Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 1994; 140:931–943
    [Google Scholar]
  93. Orner C.A., Cohen S.N. Plasmid formation in Streptomyces'. excision and integration of the SLP1 replicón at a specific chromosomal site. Mol Gen Genet 1984; 196:429–438
    [Google Scholar]
  94. Piepersberg W. Streptomycin and related aminoglycosides. In Genetics and Biochemistry of Antibiotic Production 1995 Edited by Vining L.C., Stuttard C. Newton, MA: ButterworthHeinemann; pp 531–570
    [Google Scholar]
  95. Potúcková L., Kelemen G.H., Findlay K.C., Lonetto M.A., Buttner M.J., Kormanec J. A new RNA polymerase sigma factor, A. is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 1995; 17:37–48
    [Google Scholar]
  96. Redenbach M., Kieser H.M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D.A. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 1996 (in press)
    [Google Scholar]
  97. Sarubbi E., Rudd K.E., Cashel M. Basal ppGpp level adjustment shown by new spoT mutants affect steady state growth rates and rrnA ribosomal promoter regulation in Escherichia coli. Mol Gen Genet 1988; 213:214–222
    [Google Scholar]
  98. Schnider U., Keel C., Blumer C., Troxler J., Défago G., Haas D. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHAO enhances antibiotic production and improves biocontrol abilities. J Bacteriol 1995; 177:5387–5392
    [Google Scholar]
  99. Schreiber G., Metzger S., Aizenman E., Roza S., Cashel M., Glaser G. Overexpression of the relA gene in Escherichia coli. J Biol Chem 1991; 266:3760–3767
    [Google Scholar]
  100. Stackebrandt E., Woese C.R. Towards a phylogeny of the actinomycetes and related organisms. Curr Microbiol 1981; 5:197–202
    [Google Scholar]
  101. Stackebrandt E., Liesack W., Witt D. Ribosomal RNA and rDNA sequence analyses. Gene 1992; 115:255–260
    [Google Scholar]
  102. Stormo G., Schneider T., Gold L. Characterization of translational initiation sites in E. coli. Nucleic Acids Res 1982; 10:2971–2996
    [Google Scholar]
  103. Strauch E., Takano E., Baylis H.A., Bibb M.J. The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol 1991; 5:289–298
    [Google Scholar]
  104. Strahl W.R. Compilation and analysis of DNA sequences associated with apparent Streptomyces promoters. Nucleic Acids Res 1992; 20:961–974
    [Google Scholar]
  105. Stutzman-Engwall K.J., Otten S., Hutchinson C.R. Regulation of secondary metabolism in Streptomyces spp and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol 1992; 174:144–154
    [Google Scholar]
  106. Suarez J.E., Chater K.F. DNA cloning in Streptomyces: a bifunctional replicon comprising pBR322 inserted into a Streptomyces phage. Nature 1980; 286:527–529
    [Google Scholar]
  107. Takano E., Bibb M.J. The stringent response, ppGpp and antibiotic production in Streptomyces coelicolor A3(2). Actinomycetologica 1994; 8:1–16
    [Google Scholar]
  108. Takano E., Gramajo H.C., Strauch E., Andres N., White J., Bibb M.J. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 1992; 6:2797–2804
    [Google Scholar]
  109. Tanaka K., Shiina T., Takahashi H. Nucleotide sequence of genes hrdA, hrdC, and hrdD from Streptomyces coelicolor A3(2) having similarity to rpoD genes. Mol Gen Genet 1991; 229:334–340
    [Google Scholar]
  110. Thompson C.J., Ward J.M., Hopwood D.A. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 1980; 286:525–527
    [Google Scholar]
  111. Vögtli M., Chang P.-C., Cohen S.N. afsR2: a previously undetected gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol Microbiol 1994; 14:643–653
    [Google Scholar]
  112. Westpheling J., Brawner M. Two transcribing activities are involved in expression of the Streptomyces galactose operon. J Bacteriol 1989; 171:1355–1361
    [Google Scholar]
  113. Westpheling J., Ranes M., Losick R. RNA polymerase heterogeneity in Streptomyces coelicolor. Nature 1985; 313:22–27
    [Google Scholar]
  114. Wietzorrek A. The regulation of antibiotic production in Streptomyces coelicolor A3(2): analysis of the afsB mutant BH5 1996 PhD thesis, University of East Anglia;
    [Google Scholar]
  115. Williams P. Compromising bacterial communication skills. J Pharmacol 1994; 46:1–10
    [Google Scholar]
  116. Wright F., Bibb M.J. Codon usage in the G-l-C-rich Streptomyces genome. Gene 1992; 113:55–65
    [Google Scholar]
  117. Yang Y.K., Shimizu H., Shioya S., Suga K., Nihara T., Yamada Y. Optimum autoregulator addition strategy for maximum virginiamycin production in batch culture of Streptomyces virginiae. Biotech Bioeng 1995; 46:437–442
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-6-1335
Loading
/content/journal/micro/10.1099/13500872-142-6-1335
Loading

Data & Media loading...

Most cited Most Cited RSS feed