1887

Abstract

To investigate the mechanism of formaldehyde tolerance in Gram-negative bacteria, two formaldehyde-tolerant strains, VU3695 and sp. MAC (DSM 7328), and formaldehyde-sensitive revertants obtained by ethidium bromide or novobiocin treatment were studied. The presence of high levels of formaldehyde dehydrogenase activity alone proved insufficient to confer tolerance to high formaldehyde concentrations, as shown by the high activity displayed by formaldehyde-sensitive revertants of MAC. Moreover, formaldehyde-tolerant strains also proved to be tolerant to high concentrations of acetaldehyde and glutaraldehyde, which are not oxidized by formaldehyde dehydrogenase. Treatment with sublethal concentrations of EDTA rendered the resistant strains highly sensitive to formaldehyde without affecting the activity of formaldehyde dehydrogenase. Comparison of the outer membrane proteins of formaldehyde-resistant strains with those of their sensitive revertants showed the presence of at least one additional high molecular mass protein in the tolerant strains. It is concluded that formaldehyde tolerance in the bacteria studied depends on the composition and structure of the outer membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1249
1996-05-01
2021-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1249.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1249&mimeType=html&fmt=ahah

References

  1. Azachi M., Henis Y., Oren A., f Gurevich P., Sarig S. Transformation of formaldehyde bv a Halomonas sp. Can J Microbiol 1995; 41:548–553
    [Google Scholar]
  2. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7:1513–1523
    [Google Scholar]
  3. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 1976; 72:248–254
    [Google Scholar]
  4. Diver M.D., Larry E.B., Pamela A.S. Transformation of Pseudomonas aeruginosa by electroporation. Anal Biochem 1990; 189:75–79
    [Google Scholar]
  5. Hancock R.E.W., Carey A.M. Outer membrane of Pseudomonas aeruginosa: heat and 2-mercaptoethanol-modifiable proteins. J Bacteriol 1979; 140:902–910
    [Google Scholar]
  6. Hancock R.E.W., Nikaido H. Outer membranes of gramnegative bacteria XIX. Isolation from Pseudomonas aeruginosa PAOl and use in reconstitution and definition of the permeability barrier. J Bacteriol 1978; 136:381–390
    [Google Scholar]
  7. Kato N., Kobayashi H., Shimao M., Sakazawa C. Properties of formaldehyde dismutation catalyzing enzyme of Pseudomonas putida F61. Agric Biol Chem 1984; 48:2017–2023
    [Google Scholar]
  8. Kato N., Yamagami N., Shimao M., Sakazawa C. Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61. Eur J Biochem 1986; 156:59–64
    [Google Scholar]
  9. Kato N., Miyamoto N., Shimao M., Sakazawa C. 3-Hexulose phosphate synthase from a new facultative methylotroph, Mycobacterium gastri MB19. Agric Biol Chem 1988; 52:2659–2661
    [Google Scholar]
  10. Kaulfers P.M., Brandt D. Isolation of a conjugative plasmid in Escherichia coli determining formaldehyde resistance. FEMS Microbiol Eett 1987; 43:161–163
    [Google Scholar]
  11. Kaulfers P.M., Laufs R. Übertragbare Formaldehydresistenz bei Serratia marcescens. Zentralbl Bakteriol Mikrobiol Hyg 1 Abt OrigB 1985; 181:309–319
    [Google Scholar]
  12. Kaulfers P., M. & Marquardt A. Demonstration of formaldehyde dehydrogenase activity in formaldehyde-resistant Enterobacteriaceae. FEMS Microbiol Lett 1991; 79:335–338
    [Google Scholar]
  13. Lidstrom M.E. The aerobic methylotrophic bacteria. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology 1992 Edited by Balows A., Triiper H.G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag; Isolation, Identification, Applications, pp 431–445
    [Google Scholar]
  14. Lieve L. The barrier function of the gram-negative cell envelope. Al#« NY Acad Sci 1974; 235:109–127
    [Google Scholar]
  15. McGavin M., Lam J., Forsberg C.W. Regulation and distribution of Fibrobacter succinogenes subsp succinogenes S85 endo-glucanases. Appl Environ Microbiol 1990; 56:1235–1244
    [Google Scholar]
  16. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 49:1–32
    [Google Scholar]
  17. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Spicer A.B., Spooner D.F. The inhibition of growth of Escherichia coli spheroplasts by antibacterial agents. J Gen Microbiol 1974; 80:37–50
    [Google Scholar]
  19. Wang W., Thomson J.A. Nucleotide sequence of the cel A gene encoding a cellodextrinase of R uminococcus flavefaciens. Mol Gen Genet 1990; 222:265–269
    [Google Scholar]
  20. Weiser R., Asscher A.W., Wimpenny J. In vitro reversal of antibiotic resistance by ethylendiamine tetraacetic acid. Nature 1968; 219:1365–1366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-5-1249
Loading
/content/journal/micro/10.1099/13500872-142-5-1249
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error