1887

Abstract

The degradation of asparagine by involves asparaginase and aspartate ammonia-lyase (L-aspartase). The two enzymes were shown to be positively regulated by asparagine and negatively regulated by the carbon source. Asparaginase activity was not regulated by oxygen concentration or by nitrogen catabolite repression. Induction of both enzymes by asparagine enables to utilize asparagine as carbon source. Asparaginase may also be involved in maintaining the optimal balance between asparagine and aspartate. Aspartase was not involved in the utilization of aspartate or glutamate as carbon source. The presence of high levels of the two enzymes in bacteroids suggests that they may have a role in symbiosis between and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1071
1996-05-01
2021-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1071.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1071&mimeType=html&fmt=ahah

References

  1. Atkinson M., Fisher S.F. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J 1991; Bacterio1173:23–27
    [Google Scholar]
  2. Bender R.A., Janssen K.S., Resnick A.D., Blumenberg M., Foor F., Magasanik B. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 1977; 129:1001–1009
    [Google Scholar]
  3. Beringer J.E. R factor transfer in Rhipobium leguminosarum. J Gen Microbiol 1974; 84:188–198
    [Google Scholar]
  4. Bravo A., Mora J. Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J Bacteriol 1988; 170:980–984
    [Google Scholar]
  5. Calderón J., Morett E., Mora J. w-Amidase pathway in the degradation of glutamine in Neurospora crassa. J Bacteriol 1985; 161:807–809
    [Google Scholar]
  6. Cedar H., Schwartz J.H. Localization of two l-asparaginases in anaerobically grown Escherichia coli. J Biol Chem 1967; 242:3753–3755
    [Google Scholar]
  7. Chaney A.L., Marbach E.P. Modified reagents for the determination of urea and ammonia. Clin Chem 1962; 8:130–132
    [Google Scholar]
  8. Chesney R.H. E. coli L-asparaginase II production in the presence and absence of catabolite activation protein. FEMS Microbiol Eett 1983; 17:161–162
    [Google Scholar]
  9. Courtright J.B., Henning U. Malate dehydrogenase mutants of Escherichia coli K-12. J Bacteriol 1970; 102:722–728
    [Google Scholar]
  10. Durán S., Calderón J. Role of the glutamine transaminase-cu-amidase pathway and glutaminase in glutamine degradation in Rhizobium etli. Microbiology 1995; 141:589–595
    [Google Scholar]
  11. Gilbert H.J., Blazek R., Bullman H.M.S., Minton N.P. Cloning and expression of the Erwima crysanthemi asparaginase gene in Escherichia coli and Erwinia carotovora. J Gen Microbiol 1986; 132:151–160
    [Google Scholar]
  12. Golden K.J., Bernlohr R.W. Nitrogen catabolite repression of the L-asparaginase of Bacillus licheniformis. J Bacteriol 1985; 164:938–940
    [Google Scholar]
  13. Ho P.P.K., Milikin E.B., Bobbit J.L., Grinnan E.L., Burk P.J., Frank B.H., Boeck L.D., Squires R.W. Crystalline l-asparaginase from Escherichia coli B I Purification and chemical characterization. J Biol Chem 1970; 245:3708–3715
    [Google Scholar]
  14. Iijima T., Diesterhaft M.D., Freese E. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J Bacteriol 1977; 129:1440–1447
    [Google Scholar]
  15. Jennings M.P., Beachman I.R. Co-dependent positive regulation of the ansB promoter of Escherichia coli by CRP and the FNR protein: a molecular analysis. Mol Microbiol 1993; 9:155–164
    [Google Scholar]
  16. Jennings M.P., Scott S.P., Beachman I.R. Regulation of the asnB gene of Salmonella entérica. Mol Microbiol 1993; 9:165–172
    [Google Scholar]
  17. Jerlström P.G., Liui J., Beachman I.R. Regulation of Escherichia coli L-asparaginase II and L-aspartase by the fnr gene product. FEMS Microbiol Eett 1987; 41:127–130
    [Google Scholar]
  18. Jerlström P.G., Bezak D.A., Jennings M.P., Beachman I.R. Structure and expression in Escherichia coli K-12 of the asparaginase I-encoding ans A gene, and its flanking regions. Gene 1989; 78:37–46
    [Google Scholar]
  19. Kahn M.L., Kraus J., Somerville J.E. A model of nutrient exchange in the Rhizobium-legxsme symbiosis. In Nitrogen Fixation Research Progress 1985 Edited by Evans H., Bottomley P., Newton W.E. New York: M. J. Nijhoff; pp 193–199
    [Google Scholar]
  20. Karsten W.E., Viola R.E. Kinetics studies of L-aspartase from Escherichia coli: pH-dependent activity changes. Arch Biochem Biophys 1991; 287:60–67
    [Google Scholar]
  21. Kretovich V.L., Sideinikova L.I., Ivanushkin A.G., Karayakina T.I. Localization of aspartase, asparaginase, and glutaminase in intact bacteroids of Rhit(pbium lupini. Prikl Biokhim Mikrobiol 1981; 20:445–447
    [Google Scholar]
  22. Marcus M., Halpern Y.S. The metabolic pathway of glutamate in Escherichia coli K-12. Biochim Biophys Acta 1969; 177:314–320
    [Google Scholar]
  23. Miyamoto K., Katsuki H. Possible physiological roles of aspartase, NAD- and NADP-requiring glutamate dehydrogenase of Pseudomonas fluorescens. J Biochem 1992; 112:52–56
    [Google Scholar]
  24. Nishimura N., Kisumi M. Aspartase-hyperproducing mutants of Escherichia coli B. Appl Environ Microbiol 1984; 48:1072–1075
    [Google Scholar]
  25. Rastogi V.K., Watson R.J. Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J Bacteriol 1991; 173:2879–2887
    [Google Scholar]
  26. Reibach P.H., Mask P.L., Streeter J.G. A rapid one-step method for the isolation of bacteroids from root nodules of soybean plants, utilizing self-generating Percoll gradients. Can J Microbiol 1981; 27:491–495
    [Google Scholar]
  27. Rej R., Horder M. Aspartate aminotransferase. In Methods of Enzymatic Analysis 1987 Edited by Bergmeyer H.U. Weinheim: VCH; 3 3rd edn, pp 416–444
    [Google Scholar]
  28. Roon R.J., Murdoch M., Kunze B., Dunlop P.C. Derepression of asparaginase II during exponential growth of Saccharomyces cerevisiae on ammonium ion. Arch Biochem Biophys 1982; 219:101–109
    [Google Scholar]
  29. Rözalska M., Mikucki J. Staphylococcal L-asparaginase: catabolic repression of synthesis. Acta Microbiol Pol 1992; 41:145–150
    [Google Scholar]
  30. Rudolph F.B., Fromm H.J. The purification and properties of aspartase from Escherichia coli. Arch Biochem Biophys 1971; 147:92–98
    [Google Scholar]
  31. Russell L.V., Yamasaki H. The dependence of Escherichia coli asparaginase II formation on cyclic AMP and cyclic AMP receptor protein. Can J Microbiol 1978; 24:629–631
    [Google Scholar]
  32. Segovia L., Young P.W., Martinez-Romero E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I as Rhiyobium etli sp. nov. Int J Syst Bacteriol 1993; 43:374–377
    [Google Scholar]
  33. Sinha A., Manna S., Roy S.K., Chakrabarty S.L. Induction of L-asparaginase in Vibrio proteus. Indian J Med Res 1991; 93:289–292
    [Google Scholar]
  34. Sobis M., Mikucki J. Staphylococcal L-asparaginase: enzyme kinetics. Acta Microbiol Pol 1991; 40:143–152
    [Google Scholar]
  35. Stitt M. Fumarase. In Methods of Enzymatic Analysis 1984 Edited by Bergmeyer H.U. Weinheim: Verlag Chemie; 4 3rd edn, pp 359–362
    [Google Scholar]
  36. Sun D., Setlow P. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for l-asparaginase and L-aspartase. J Bacteriol 1991; 173:3831–3845
    [Google Scholar]
  37. Takagi T., Kisumi M. Isolation of a versatile Serratia marcescens mutant as a host and molecular cloning of the aspartase gene. J Bacteriol 1985; 161:1–6
    [Google Scholar]
  38. Tokushige M. Aspartate amino-lyase. Methods Enyymol 1985; 17:618–627
    [Google Scholar]
  39. Watson R.J., Rastogi V.K. Cloning and nucleotide sequencing of Rhiyobium meliloti aminotransferase genes: an aspartate aminotransferase required for symbiotic nitrogen fixation is atypical. J Bacteriol 1993; 175:1919–1928
    [Google Scholar]
  40. Willis R.C., Woolf oik C.A. Asparagine utilization in Escherichia coli. J Bacteriol 1974; 118:231–241
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-5-1071
Loading
/content/journal/micro/10.1099/13500872-142-5-1071
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error