1887

Abstract

We have studied the mode of recombination of six insertions during genetic transformation of . The six heterologous insertions are located at the same site in the locus of the pneumococcal chromosome; insertion sizes range from 4 to 1374 bp. With respect to single-point markers we found that the number of transformants in one-point crosses is reduced, while the number of wild-type transformants in two-point crosses is drastically increased, what we call hyper-recombination. The magnitude of the shift is correlated with the size of the insert. This effect could result either from a special repair pathway of multibase heteroduplexes or from the exclusion of multibase heterologous insertions out of the pairing synapsis. To test these hypotheses we have used insertions in two kinds of three-point crosses. The repair model predicts that the excess of wild-type transformants remains in one set of crosses but is suppressed in the second set. The results we obtained are reversed, ruling out the hypothesis of a repair process, but in agreement with predictions based on the exclusion model. Moreover, we have re-examined the situation of deletions, our previous results suggesting that deletions were likely to be converted at the heteroduplex step. Genetic evidence we obtained in this work no longer supports this hypothesis. Thus, long heterologous insertions are partly excluded at the pairing step.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-695
1996-03-01
2021-04-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-695.html?itemId=/content/journal/micro/10.1099/13500872-142-3-695&mimeType=html&fmt=ahah

References

  1. Alloing G., Trombe M. C., Claverys J. P. 1990; The ami locus of the Gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of Gram-negative bacteria. Mol Microbiol 4:633–644
    [Google Scholar]
  2. Avery O. T., MacLeod C. M., MacCarty M. 1944; Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 89:157–158
    [Google Scholar]
  3. Ayares D., Ganea D., Chekuri L., Campbell C. R., Kucherlapati R. 1987; Repair of single-stranded DNA nicks, gaps, and loops in mammahan cells. Mol Cell Biol 7:1656–1662
    [Google Scholar]
  4. Bi X., Liu L. F. 1994; recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 235:414–423
    [Google Scholar]
  5. Bianchi M. E., Radding C. M. 1983; Insertions, deletions and mismatches in heteroduplex DNA made by RecA protein. Cell 35:511–520
    [Google Scholar]
  6. Carraway M., Marinus M. G. 1993; Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli . J Bacteriol 175:3972–3980
    [Google Scholar]
  7. Claverys J.-P., Lacks S. A. 1986; Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev 50:133–165
    [Google Scholar]
  8. Claverys J.-P., Lataste H., Sicard A. M. 1979; Localization of two EroRI restriction sites within the amiA locus in pneumococcus : relationship between the physical and the genetic map. Transformation 1978161–169 Glover S. W., Butler L. O. Oxford: Cotswold Press;
    [Google Scholar]
  9. Claverys J.-P., Roger M., Sicard A. M. 1980; Excision and repair of mismatched base pairs. Mol & Gen Genet 178:191–201
    [Google Scholar]
  10. Claverys J.-P., Méjean V., Gasc A. M., Sicard A. M. 1983; Mismatch repair in Streptococcus pneumoniae: relationship between base mismatches and transformation efficiencies. Proc Natl Acad SciUSA 805956–5960
    [Google Scholar]
  11. Dowson C. G., Hutchinson A., Brannigan J. A., George R. C., Hansman D., Linares J., Tomasz A., Maynard-Smith J., Spratt B. G. 1989; Horizontal transfer of penicillin binding protein genes in penicillin resistant clinical isolates of Streptococcus pneumoniae . Proc Natl Acad SciUSA 868842–8846
    [Google Scholar]
  12. Ephrussi-Taylor H., Gray T. C. 1966; Genetic studies of recombining DNA in pneumococcal transformation. J Gen Physiol 49:211–231
    [Google Scholar]
  13. Fogel S., Mortimer R. K., Lusnak K. 1981; Mechanisms of meiotic gene conversion, or ‘wanderings on a foreign strand’. The Molecular Biology of the Yeast Saccharomyces : Life Cycle and Inheritance289–339 Strathern J. N., Jones E. W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Gasc A. M., Garcia P., Baty D., Sicard A. M. 1987; Mismatch repair during pneumococcal transformation of small deletions produced by site-directed mutagenesis. Mol & Gen Genet 210:369–372
    [Google Scholar]
  15. Gasc A. M., Sicard A. M., Claverys J.-P. 1989; Repair of single and multiple mismatches during recombination in Streptococcus pneumoniae . Genetics 120:29–36
    [Google Scholar]
  16. Ghei O. M. K., Lacks S. A. 1967; Recovery of donor deoxyribonucleic acid marker activity from eclipse in pneumococcal transformation. J Bacterial 93:816–829
    [Google Scholar]
  17. Kramer B., Kramer W., Fritz H.-J. 1984; Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli . Cell 38:879–887
    [Google Scholar]
  18. Lacks S. 1966; Integration efficiency and genetic recombination in pneumococcal transformation. Genetics 53:207–235
    [Google Scholar]
  19. Lacks S. A. 1970; Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol 101:373–383
    [Google Scholar]
  20. Lacks S. 1988; Mechanisms of genetic recombination in Grampositive bacteria. Genetic Recombination43–86 Kucherlapati R., Smith G. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Lefèvre J. C., Claverys J.-P., Sicard A. M. 1979; Donor deoxyribonucleic acid length and marker effect in pneumococcal transformation. J Bacterial 138:80–86
    [Google Scholar]
  22. Lefèvre J. C., Mostachfi P., Gasc A. M., Guillot E., Pasta F., Sicard M. 1989; Conversion of deletions during recombination in pneumococcal transformation. Genetics 123:455–464
    [Google Scholar]
  23. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Martinez S., Lopez P., Espinosa M., Lacks S. A. 1986; Cloning of a gene encoding a DNA polymerase-exonuclease of Streptococcus pneumoniae . Gene 44:79–88
    [Google Scholar]
  25. Méjean V., Claverys J.-P. 1984; Effect of mismatched base pairs on the fate of donor DNA in transformation of Streptococcus pneumoniae . Mol & Gen Genet 197:467–471
    [Google Scholar]
  26. Méjean V., Claverys J.-P., Vasseghi H., Sicard A. M. 1981; Rapid cloning of specific DNA fragments of Streptococcus pneumoniae by vector integration into the chromosome followed by endonucleolytic excision. Gene 15:289–293
    [Google Scholar]
  27. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  28. Messing J., Cua R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321
    [Google Scholar]
  29. Morrison D. A., Guild W. R. 1972; Transformation and deoxyribonucleic acid size : extent of degradation on entry varies with size of donor. J Bacterial 112:1157–1168
    [Google Scholar]
  30. Pasta F., Sicard M. 1994; Hyperrecombination in pneumococcus, A/G to C.G repair and requirement for DNA polymerase I. Mutat Res 315:113–122
    [Google Scholar]
  31. Rodriguez R. L., West R. W., Heyneker H. L., Bolivar F., Boyer H. W. 1977; Characterization of tetracycline and ampicillin resistant plasmid cloning vehicles. Molecular Cloning of Recombinant DNA73–84 Scott W. A., Werner H. W. Miami Winter Symposia. New York: Academic Press;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad SciUSA 745463–5467
    [Google Scholar]
  33. Sicard A. M. 1964; A new synthetic medium for Diplococcus pneumoniae and its use for the study of reciprocal transformation at the ami locus. Genetics 50:31–44
    [Google Scholar]
  34. Tiraby G., Fox M. S. 1973; Marker discrimination in transformation and mutation of pneumococcus. Proc Nati Acad SciUSA 703541–3545
    [Google Scholar]
  35. Tiraby G., & Sicard A. M. 1973a; Integration efficiency in DNA-induced transformation of pneumococcus. II. Genetic studies of a mutant integrating all the markers with a high efficiency. Genetics 75:23–33
    [Google Scholar]
  36. Tiraby G., Sicard A. M. 1973b; Integration efficiencies of spontaneous mutant alleles of amiA locus in pneumococcal transformation. J Bacterioi 116:1130–1135
    [Google Scholar]
  37. Vasseghi H., Claverys J.-P., Sicard A. M. 1981; Mechanism of integrating foreign DNA during transformation of Streptococcus pneumoniae . Proceedings of the 5th European Meeting on Transformation and Transfection137–154 Polsinelli G., Mazza G. Oxford: Cotswold Press;
    [Google Scholar]
  38. Weiss U., Wilson J. H. 1987; Repair of single-stranded loops in heteroduplex DNA transfected into mammalian cells. Proc Nati Acad SciUSA 841619–1623
    [Google Scholar]
  39. Wu T.-H., Clarke C. H., & Marinus M. G. 1990; Specificity of Escherichia coli mutD and mutL mutator strains. Gene 87:1–5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-3-695
Loading
/content/journal/micro/10.1099/13500872-142-3-695
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error