1887

Abstract

The anaerobic transcriptional regulator ANR induces the arginine deiminase and denitrification pathways in during oxygen limitation. The homologous activator FNR of , when introduced into an mutant of , could functionally replace ANR for anaerobic growth on nitrate but not for anaerobic induction of arginine deiminase. In an FNR-positive strain, the ANR-dependent promoter of the operon, which encodes the enzymes of the arginine deiminase pathway, was not expressed. To analyse systematically these distinct induction patterns, a promoter-probe, broad-host-range plasmid containing various –40 regions (the ANR/FNR recognition sequences) and –10 promoter sequences was constructed. These constructs were tested in and in expressing either ANR or FNR. In conjunction with the consensus –10 hexamer of RNA polymerase (TATAAT), the consensus FNR site (TTGAT .…ATCAA) was recognized efficiently by ANR and FNR in both hosts. By contrast, when promoters contained the Arc box (TTGAC…. ATCAG), which is found in the promoter, or a symmetrical mutant FNR site (CTGAT…. ATCAG), ANR was a more effective activator than was FNR. Conversely, an extended 22 bp, fully symmetrical FNR site allowed better activation with FNR than with ANR. Combination of the arc promoter –10 sequence (CCTAAT) with the Arc box or the consensus FNR site resulted in good ANR-dependent expression in but gave practically no expression in , suggesting that RNA polymerase of differs from the enzyme in –10 recognition specificity. In conclusion, ANR and FNR are able to activate the RNA polymerases of and when the –40 and –10 promoter elements are identical or close to the consensus sequences.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-685
1996-03-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-685.html?itemId=/content/journal/micro/10.1099/13500872-142-3-685&mimeType=html&fmt=ahah

References

  1. Arai H., Igarashi Y., Kodama T. 1994; Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa . Biosci Biotechnol Biochem 58:1286–1291
    [Google Scholar]
  2. Arai H., Igarashi Y., Kodama T. 1995a; The structural genes for nitric oxide reductase from Pseudomonas aeruginosa . Bioehim Biophys Acta 1261:279–284
    [Google Scholar]
  3. Arai H., Igarashi Y., Kodama T. 1995b; Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371:73–76
    [Google Scholar]
  4. Bagdasarian M. M., Amann E., Lurz R., Rückert B., Bagdasarian M. 1983; Activity of the hybrid trp-lac tac ) promoter of Escherichia coli , in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. Gene 26:273–282
    [Google Scholar]
  5. Bell A., Busby S. 1994; Location and orientation of an activating region in the Escherichia coli transcription factor, FNR. Mol Microbiol 11:383–390
    [Google Scholar]
  6. Bell A. I., Gaston K. L, Cole J. A., Busby S. J. W. 1989; Cloning of binding sequences for the Escherichia coli transcription activators, FNR and CRP: location of bases involved in discrimination between FNR and CRP. Nueleie Acids Res 17:3865–3874
    [Google Scholar]
  7. Bell A. I., Cole J. A., Busby S. J. W. 1990; Molecular genetic analysis of an FNR-dependent anaerobically inducible Escherichia coli promoter. Mol Microbiol 4:1753–1763
    [Google Scholar]
  8. Busby S., Ebright R. H. 1994; Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79:743–746
    [Google Scholar]
  9. Cuypers H., Zumft W. G. 1993; Anaerobic control of denitrification in Pseudomonas stutteri escapes mutagenesis of an fnr -like gene. J Bacteriol 175:7236–7246
    [Google Scholar]
  10. Del Sal G., Manfioletti G., Schneider C. 1988; A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878
    [Google Scholar]
  11. Dreyfus M. 1988; What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs?. J Mol Biol 204:79–94
    [Google Scholar]
  12. Eiglmeier K., Honoré N., Iuchi S., Lin E. C. C., & Cole S. T. 1989; Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol 3:869–878
    [Google Scholar]
  13. Galimand M., Gamper M., Zimmermann A., Haas D. 1991; Positive FNR-Iike control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa . J Bacterial 173:1598–1606
    [Google Scholar]
  14. Gamper M., Zimmermann A., Haas D. 1991; Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa . J Bacterial 173:4742–4750
    [Google Scholar]
  15. Gao J., Gussin G. N. 1991; RNA polymerases from Pseudomonas aeruginosa and Pseudomonas syringae respond to Escherichia coli activator proteins. J Bacteriol 173:394–397
    [Google Scholar]
  16. Green J., Guest J. R. 1994; Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors. Mol Microbiol 12:433–444
    [Google Scholar]
  17. Green J., Trageser M., Six S., Unden G., Guest J. R. 1991; Characterization of the FNR protein of Escherichia coli , an iron- binding transcriptional regulator. Proc R Soc Lond B 244137–144
    [Google Scholar]
  18. Green J., Sharrocks A. D., Green B., Geisow M., Guest J. R. 1993; Properties of FNR proteins substituted at each of the five cysteine residues. Mol Microbiol 8:61–68
    [Google Scholar]
  19. Haas D., Gamper M., Zimmermann A. 1992; Anaerobic control in Pseudomonas aeruginosa . In Pseudomonas·. Molecular Biology and Biotechnology177–187 Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Jayaraman P.-S., Cole J. A., Busby S. J. W. 1989; Mutational analysis of the nucleotide sequence at the FNR-dependent nir B promoter in Escherichia coli . Nucleic Acids Rer 17:135–145
    [Google Scholar]
  21. Jeenes D. J., Soldati L., Baur H., Watson J. M., Mercenier A., Reimmann C., Leisinger T., Haas D. 1986; Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host. Mol & Gen Genet 203:421–429
    [Google Scholar]
  22. Kahn M., Kolter R., Thomas C., Figurski D., Meyer R., Remaut E., Helinski D. R. 1979; Plasmid cloning vehicles derived from plasmids ColEl, F, R6K, and RK2. Methods Ensymol 68:268–280
    [Google Scholar]
  23. Khoroshilova N., Beinert H., Kiley P. J. 1995; Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci USA 922499–2503
    [Google Scholar]
  24. Lazazzera B. A., Bates D. M., Kiley P. J. 1993; The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes & Dev 7:1993–2005
    [Google Scholar]
  25. Lisser S., Margalit H. 1993; Compilation of E. coli mRNA promoter sequences. Nucleic Acids Rei 21:1507–1516
    [Google Scholar]
  26. Lodge J., Williams R., Bell A., Chan B., Busby S. 1990; Comparison of promoter activities in Escherichia coli and Pseudomonas aeruginosa : use of a new broad-host-range promoter-probe plasmid. FEMS Microbiol Eett 67:221–226
    [Google Scholar]
  27. Lüthi E., Mercenier A., Haas D. 1986; The arc ABC oρeron required for fermentative growth of Pseudomonas aeruginosa on arginine : Tn5-751 -assisted cloning and localization of structural genes. J Gen Microbiol 132:2667–2675
    [Google Scholar]
  28. Lüthi E., Baur H., Gamper M., Brunner F., Villeval D., Mercenier A., Haas D. 1990; The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD , encoding a membrane protein. Gene 87:37–43
    [Google Scholar]
  29. Minton N. P. 1984; Improved plasmid vectors for the isolation of translational lac gene fusions. Gene 31:269–273
    [Google Scholar]
  30. Ronald S., Farinha M. A., Allan B. J., Kropinski A. M. 1992; Cloning and physical mapping of transcriptional regulatory (sigma) factors from Pseudomonas aeruginosa . In Pseudomonas·. Molecular Biology and Biotechnology249–257 Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning·, a Eaboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Savioz A., Zimmermann A., Haas D. 1993; Pseudomonas aeruginosa promoters which contain a conserved GG-N10-GC motif but appear to be RpoN-independent. Mol & Gen Genet 238:74–80
    [Google Scholar]
  33. Sawers R. G. 1991; Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAOl exhibiting structural and functional similarity to the FNR protein of Escherichia coli . Mol Microbiol 5:1469–1481
    [Google Scholar]
  34. Sawers G. 1993; Specific transcriptional requirements for positive regulation of the anaerobically inducible pfl operon by ArcA and FNR. MolMicrobiol 10:737–747
    [Google Scholar]
  35. Sharrocks A. D., Green J., Guest J. R. 1991; FNR activates and represses transcription in vitro . Proc R Soc Eond B 245219–226
    [Google Scholar]
  36. Shaw D. J., Guest J. R. 1982; Nucleotide sequence of the fnr gene and primary structure of the Fnr protein of Escherichia coli . Nueleie Acids Res 10:6119–6130
    [Google Scholar]
  37. Spiro S. 1994; The FNR family of transcriptional regulators. Antonie Eeeuwenhoek 66:23–36
    [Google Scholar]
  38. Spiro S., Guest J. R. 1987; Activation of the lac operon of Escherichia coli by a mutant FNR protein. Mol Microbiol 1:53–58
    [Google Scholar]
  39. Spiro S., Guest J. R. 1990; FNR and its role in oxygen-regulated gene expression in Escherichia coli . FEMS Microbiol Rev 75:399–428
    [Google Scholar]
  40. Spiro S., Gaston K. L, Bell A. I., Roberts R. E., Busby S. J. W., Guest J. R. 1990; Interconversion of the DNA-binding specificities of two related transcription regulators, CRP and FNR. Mol Microbiol 4:1831–1838
    [Google Scholar]
  41. Tanaka K., Takahashi H. 1991; Cloning and analysis of the gene rpo DA for the principal σ factor of Pseudomonas aeruginosa . Biochim Biophys Acta 1089:113–119
    [Google Scholar]
  42. Unden G., Becker S., Bongaerts J., Holighaus G., Schirawski J., Six S. 1995; O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol 164:81–90
    [Google Scholar]
  43. Walker M. S., DeMoss J. A. 1991; Promoter sequence requirements for Fnr-dependent activation of transcription of the narGHJI operon. Mol Microbiol 5:353–360
    [Google Scholar]
  44. Walker M. S., DeMoss J. A. 1992; Role of alternative promoter elements in transcription from the nar promoter of Escherichia coli . J Bacteriol 174:1119–1123
    [Google Scholar]
  45. Ye R. W., Haas D., Ka J.-O., Krishnapillai V., Zimmermann A., Baird C., Tiedje J. M. 1995; Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609
    [Google Scholar]
  46. Yu H., Schurr M. J., Deretic V. 1995; Functional equivalence of Escherichia coli σ E and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa . J Bacteriol 177:3259–3268
    [Google Scholar]
  47. Ziegelhoffer E. C., Kiley P. J. 1995; In vitro analysis of a constitutively active mutant form of the Escherichia coli global transcription factor FNR. J Mol Biol 245:351–361
    [Google Scholar]
  48. Zimmermann A., Reimmann C., Galimand M., Haas D. 1991; Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr , a regulatory gene homologous with fnr of Escherichia coli . Mol Microbiol 5:1483–1490
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-3-685
Loading
/content/journal/micro/10.1099/13500872-142-3-685
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error