1887

Abstract

Inducer expulsion, a phenomenon in which rapidly metabolizable sugars cause cytoplasmic dephosphorylation and efflux of pre-accumulated sugar-phosphates (sugar-P), has been documented for , and but not for other Gram-positive bacteria. Using intact cells and membrane vesicles, we show that exhibits both inducer exclusion and inducer expulsion, and that the latter phenomenon is dependent on the metabolite-activated ATP-dependent HPr(Ser) kinase that phosphorylates Ser-46 in HPr of the phosphotransferase system. A small, heat-stable, membrane-associated, HPr(Ser-P)-activated sugar-P phosphatase (Pase II), previously identified only in , is shown to be present in extracts of and but not in those of or , organisms that do not exhibit the inducer expulsion phenomenon. Further, an organism that exhibits inducer expulsion by a different mechanism, also apparently lacks Pase II. The results reveal that Pase II is present in those organisms that exhibit the coupled sugar-P hydrolysis/expulsion mechanism but not those that lack this mechanism. They provide correlative evidence that Pase II initiates inducer expulsion in species of enterococci, streptococci and lactococci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-585
1996-03-01
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-585.html?itemId=/content/journal/micro/10.1099/13500872-142-3-585&mimeType=html&fmt=ahah

References

  1. Cook G. M., Kearns D. B., Russell J. B., Reizer J., Saier M. H. Jr 1995; Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms. Microbiology 141:2261–2269
    [Google Scholar]
  2. Deutscher J., Sauerwald H., Reizer J., Saier M. H. Jr, Zwacka R., Steinmetz M. 1994; Loss of protein kinase catalysed phos-phorylation of HPr, a phospho-carrier protein of the phospho-transferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol 178:3338–3344
    [Google Scholar]
  3. Fujita Y., Miwa Y. 1994; Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein. J Bacteriol 176:511–513
    [Google Scholar]
  4. Hoischen C., Reizer J., Dijkstra A., Rottem S., Saier M. H. Jr 1993; Presence of protein constituents of the Gram-positive bacterial phosphotransferase regulatory system in Acholeplasma laidlawii. J Bacteriol 175:6599–6604
    [Google Scholar]
  5. Krämer R. 1994a; Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–94
    [Google Scholar]
  6. Krämer R. 1994b; Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol 162:1–13
    [Google Scholar]
  7. Kundig W., Roseman S. 1971; Sugar transport. II. Characterization of constitutive membrane-bound Enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem 246:1407–1418
    [Google Scholar]
  8. Mimura C. S., Poy F., Jacobson G. R. 1987; ATP-dependent protein kinase activities in the oral pathogen Streptococcus mutans. J Cell Biochem 33:161–171
    [Google Scholar]
  9. Mitchell W. J., Reizer J., Herring C., Hoischen C., Saier M. H. Jr 1993; Identification of a phosphoenolpyruvate : fructose phosphotransferase system (fructose-1-P forming) in histeria monocytogenes. J Bacteriol 175:2756–2761
    [Google Scholar]
  10. Parvin R., Smith R. A. 1969; Determination of inorganic phosphate in the presence of labile organic phosphates. Anal Biochem 27:65–72
    [Google Scholar]
  11. Reizer J., Panos C. 1980; Regulation of β-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Proc Natl Acad SetUSA 775497–5501
    [Google Scholar]
  12. Reizer J., Novotny M. H., Panos C., Saier M. H. Jr 1983; The mechanism of inducer expulsion in Streptococcus pyogenes: a two step process activated by ATP. J Bacteriol 156:354–361
    [Google Scholar]
  13. Reizer J., Saier M. H. Jr, Deutscher J., Grenier F., Thompson J., Hengstenberg W. 1988; The phosphoenolpyruvate : sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism and regulation. CRC Crit Rev Microbiol 15:297–338
    [Google Scholar]
  14. Reizer J., Sutrina S. L., Saier M. H. Jr, Stewart G. C., Peterkofsky A., Reddy P. 1989; Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate : sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J 8:2111–2120
    [Google Scholar]
  15. Romano A. H., Saier M. H. Jr 1992; Evolution of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. I. Physiologic and organismic considerations. In The Evolution of Metabolic Function143–170 Mortlock R. P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  16. Romano A. H., Brino G., Peterkofsky A., Reizer J. 1987; Regulation of yff-galactoside transport and accumulation in hetero-fermentative lactic acid bacteria. J Bacteriol 169:5589–5596
    [Google Scholar]
  17. Saier M. H. Jr, Simoni R. D. 1976; Regulation of carbohydrate uptake in Gram-positive bacteria. J Biol Chem 251:893–894
    [Google Scholar]
  18. Saier M. H. Jr, Feucht B. U., Mora W. K. 1977; Sugar-P: sugar transphosphorylation and exchange group translocation catalysed by the Enzyme II complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 252:8899–8907
    [Google Scholar]
  19. Saier M. H. Jr, Ye J.-J., Klinke S., Nino E. 1995; Identification of an anaerobically-induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium, Lactobacillus brevis. J Bacteriol 178:314–316
    [Google Scholar]
  20. Thompson J., Chassy B. M. 1983; Intracellular hexose-6-phosphate: phosphohydrolase from Streptococcus lactis : purification, properties, and function. J Bacteriol 156:70–80
    [Google Scholar]
  21. Thompson J., Saier M. H. Jr 1981; Regulation of methyl-β d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms. J Bacteriol 146:885–894
    [Google Scholar]
  22. Titgemeyer F., Walkenhorst J., Reizer J., Stuiver M. H., Cui X., Saier M. H. Jr 1995; Identification and characterization of phosphoenolpyruvate: fructose phosphotransferase systems in three Streptomyces species. Microbiology 141:51–58
    [Google Scholar]
  23. Vadeboncoeur C., Brochu D., Reizer J. 1991; Quantitative determination of the intracellular concentration of the various forms of HPr, a phosphocarrier protein of the phosphoenolpyruvate : sugar phosphotransferase system in growing cells of oral streptococci. Anal Biochem 196:24–30
    [Google Scholar]
  24. Waygood E. B., Mattoo R. L., Erickson E., Vadeboncoeur C. 1986; Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system of Streptococcus salivarius. Detection of two different ATP-dependent phosphorylations of the phospho-carrier protein HPr. Can J Microbiol 32:310–318
    [Google Scholar]
  25. Ye J.-J., Saier M. H. Jr 1995a; Cooperative binding of lactose and HPr(SerP) to the lactose: H+ permease of Lactobacillus brevis. Proc Natl Acad SciUSA 92417–421
    [Google Scholar]
  26. Ye J.-J., Saier M. H. Jr 1995b; Allosteric regulation of the glucose: H+symporter of Lactobacillus brevis: cooperative binding of glucose and HPr(Ser-P). J Bacteriol 177:1900–1902
    [Google Scholar]
  27. Ye J.-J., Saier M. H. Jr 1995c; Purification and characterization of a small membrane-associated sugar-phosphate phosphatase that is allosterically activated by HPr(Ser-P) of the phosphotransferase system in Lactococcus lactis. J Biol Chem 270:16740–16744
    [Google Scholar]
  28. Ye J. J., Reizer J., Cui X., Saier M. H. Jr 1994a; ATP-dependent phosphorylation of serine in HPr regulates lactose: H+ symport in Lactobacillus brevis. Proc Natl Acad SciUSA 913102–3106
    [Google Scholar]
  29. Ye J. J., Neal J. W., Cui X., Reizer J., Saier M. H. Jr 1994b; Regulation of the glucose :H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. J Bacteriol 176:3484–3492
    [Google Scholar]
  30. Ye J. J., Reizer J., Cui X., Saier M. H. Jr 1994c; Inhibition ofthe phosphoenolpyruvate : lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lacto-coccus lactis by ATP-dependent metabolite-activated phosphorylation of serine-46 in the phosphocarrier protein, HPr. J Biol Chem 269:11837–11844
    [Google Scholar]
  31. Ye J. J., Reizer J., Saier M. H. Jr 1994d; Regulation of 2-deoxyglucose phosphate accumulation in L,actococcus lactis vesiclesby metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system. Microbiology 140:3421–3429
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-3-585
Loading
/content/journal/micro/10.1099/13500872-142-3-585
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error