1887

Abstract

In , cAMP levels vary with the carbon source used in the culture medium. These levels are dependent on the cellular concentration of phosphorylated EnzymeIIA, a component of the glucose-phosphotransferase system, which activates adenylate cyclase (AC). When cells are grown on glucose 6-phosphate (Glc6P), the cAMP level is particularly low. In this study, we investigated the mechanism leading to the low cAMP level when Glc6P is used as the carbon source, i.e. the mechanism preventing the activation of AC by phosphorylated EnzymellA. Glc6P is transported via the Uhp system which is inducible by extracellular Glc6P. The Uhp system comprises a permease UhpT and three proteins UhpA, UhpB and UhpC which are necessary for gene transcription. Controlled expression of UhpT in the absence of the regulatory proteins (UhpA, UhpB and UhpC) allowed us to demonstrate that (i) the Uhp regulatory proteins do not prevent the activation of AC by direct interaction with EnzymellA and (ii) an increase in the amount of UhpT synthesized (corresponding to an increase in the amount of Glc6P transported) correlates with a decrease in the cAMP level. We present data indicating that Glc6P or its degradation is unlikely to be responsible for the low cAMP level. It is concluded that the level of cAMP in the cell is determined by the flux of Glc6P through UhpT.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-575
1996-03-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-575.html?itemId=/content/journal/micro/10.1099/13500872-142-3-575&mimeType=html&fmt=ahah

References

  1. Biville F., Turlin E., Gasser F. 1991; Mutants of Escherichia coli producing pyrroloquinoline quinone. J Gen Microbiol 137:1775–1782
    [Google Scholar]
  2. Bochner B. R., Huang H. C., Schieven G. L., Ames B. N. 1980; Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933
    [Google Scholar]
  3. Bouvet O. M. M., Grimont P. A. D. 1987; Diversity of the phosphoenol pyruvate/glucose phosphotransferase system in the Enterobacteriaceae. Ann Inst Pasteur Microbiol 138:3–13
    [Google Scholar]
  4. Bruni C. B., Colantuoni V., Sbordone L., Cortese R., Blasi F. 1977; Biochemical and regulatory properties of E. coli K12 hisT mutants. J Bacteriol 130:4–10
    [Google Scholar]
  5. Crasnier M., Dumay V., Danchin A. 1994; The catalytic domain of Escherichia coli adenylate cyclase as revealed by deletion analysis of the cya gene. Mol & Gen Genet 243:409–416
    [Google Scholar]
  6. De Reuse H., Danchin A. 1988; The ptsH, ptsI and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. J Bacterial 170:3827–3837
    [Google Scholar]
  7. Dietz G. W., Heppel L. A. 1971a; Studies on the uptake of hexose phosphates. II: The induction of the glucose 6-phosphate transport system by exogeneous but not endogenously formed glucose 6-phosphate. J Biol Chem 246:2885–2890
    [Google Scholar]
  8. Dietz G. W., Heppel L. A. 1971b; Studies on the uptake of hexose phosphates. III: Mechanism of uptake of glucose 1-phosphate in Escherichia coli. J Biol Chem 246:2891–2897
    [Google Scholar]
  9. Dumay V., Crasnier M. 1994; Role of the phosphotransferase system in Escheriehia coli strains deficient in hexose phosphate transport. FEMS Microbiol Lett 116:209–214
    [Google Scholar]
  10. Epstein W., Rothman-Denes L. B., Hesse J. 1975; Adenosine 3′ : 5′-cyclic monophosphate as mediator of catabolite repression in Eseheriehia coli. Proc Natl Acad SciUSA 722300–2304
    [Google Scholar]
  11. Ferenci T., Kornberg H. L., Smith J. 1971; Isolation and properties of a regulatory mutant in the hexose phosphate transport system of Escherichia coli. FEBS Lett 13:133–136
    [Google Scholar]
  12. Feucht B. U., Saier M. H. 1980; Fine control of adenylate cyclase by the phosphoenolpyruvate : sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J Bacteriol 141:603–610
    [Google Scholar]
  13. Fraenkel D. G., Banerjee S. 1972; Detection mapping of zwf, the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase in Escherichia coli. Genetics 71:481–489
    [Google Scholar]
  14. Fraenkel D. G., Levisohn S. R. 1967; Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol 93:1571–1578
    [Google Scholar]
  15. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119–131
    [Google Scholar]
  16. Ghosh B. K., Owens K., Pietri R., Peterkofsky A. 1989; Localization to the inner surface of the cytoplasmic membrane by immunoelectron microscopy of enzyme I of the phosphoenol-pyruvate : sugar phosphotransferase system of Escherichia coli. Proc Natl Acad SciUSA 86849–853
    [Google Scholar]
  17. Guidi-Rontani C., Danchin A., Ullmann A. 1981; Isolation and characterization of an Escherichia coli mutant affected in the regulation of adenylate cyclase. J Bacteriol 148:753–761
    [Google Scholar]
  18. Harman J. G., Botsford J. L. 1979; Synthesis of adenosine 3′ : 5′-cyclic monophosphate in Salmonella typhimurium growing in continuous culture. J Gen Microbiol 110:243–246
    [Google Scholar]
  19. Harwood J. P., Peterkofsky A. 1975; Glucose-sensitive adenylate cyclase in toluene-treated cells of Escherichia coli B. J Biol Chem 250:4656–4662
    [Google Scholar]
  20. Island M. D., Kadner R. J. 1993; Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacteriol 175:5028–5034
    [Google Scholar]
  21. Island M. D., Wei B. Y., Kadner R. J. 1992; Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol 174:2754–2762
    [Google Scholar]
  22. Jacobson G. R., Lee C. A., Leonard J. E., Saier M. H. Jr 1983; Mannitol-Specific Enzyme II of the bacterial phosphotransferase system. J Biol Chem 258:10748–10756
    [Google Scholar]
  23. Joseph E., Bernsley C., Guiso N., Ullmann A. 1982; Multiple regulation of the activity of adenylate cyclase in Escherichia coli. Mol & Gen Genet 185:262–268
    [Google Scholar]
  24. Kadner R. J., Murphy P., Stephens C. M. 1992; Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J Gen Microbiol 138:2007–2014
    [Google Scholar]
  25. Kornberg H. L. 1973; Fine control of sugar uptake by Escherichia coli. Symp Soc Exp Biol 27:175–193
    [Google Scholar]
  26. Lengeler J., Steinberger H. 1978; Analysis of regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12. Mol & Gen Genet 167:75–82
    [Google Scholar]
  27. Lévy S., Zeng G. Q., Danchin A. 1990; Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. Gene 86:27–33
    [Google Scholar]
  28. Maloney P. C., Ambudkar S. V., Anantharam V., Sonna L. A., Varadhachary A. 1990; Anion-exchange mechanisms in bacteria. Microbiol Rev 54:1–17
    [Google Scholar]
  29. Maloy S. R., Nunn W. D. 1981; Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1112
    [Google Scholar]
  30. Matin A., Matin M. K. 1982; Cellular levels, excretion, and synthesis rates of cyclic AMP in Escherichia coli grown in continuous culture. J Bacteriol 149:801–807
    [Google Scholar]
  31. Miller J. F. 1992; A Short Course in Bacterial Genetics : a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. , 2nd. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Peterkofsky A. 1988; Redistribution of phosphate pools and the regulation of Escherichia coli adenylate cyclase activity. Arch Biochem Biophys 265:227–233
    [Google Scholar]
  33. Peterkofsky A., Gazdar C. 1979; Escherichia coli adenylate cyclase complex : regulation by the proton electrochemical gradient. Proc Natl Acad SciUSA 761099–1103
    [Google Scholar]
  34. Pogell B. M., Maity B. R., Frumkin S., Shapiro S. 1966; Induction of an active transport system for glucose 6-phosphate in Escherichia coli. Arch Biochem Biophys 116:406–415
    [Google Scholar]
  35. Postma P. W., Schuitema A., Kwa C. 1981; Regulation of methyl-β-galactoside permease activity in pts and crr mutants of Salmonella typhimurium. Mol & Gen Genet 181:448–453
    [Google Scholar]
  36. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  37. Pradel E., Boquet P. L. 1989; Mapping of the Escherichia coli acid glucose-1-phosphatase gene agp and analysis of its expression in vivo by use of an agp-phoA protein fusion. J Bacterial 171:3511–3517
    [Google Scholar]
  38. Roy A., Danchin A., Joseph E., Ullmann A. 1983; Two functional domains in adenylate cyclase of Escherichia coli. J Mol Biol 165:197–202
    [Google Scholar]
  39. Saier M. H. Jr, Feucht B. U. 1975; Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate : sugar phosphotransferase system in Salmonella typhimurium. J Biol Chem 250:7078–7080
    [Google Scholar]
  40. Saier M. H. Jr, Cox D. F., Feucht B. U., Novotny M. J. 1982; Evidence for the functional association of Enzyme I and Hpr of the phosphoenolpyruvate-sugar phosphotransferase system with the membrane in sealed vesicles of Escherichia coli. J Cell Biochem 18:231–238
    [Google Scholar]
  41. Shattuck-Eidens D. M., Kadner R. J. 1981; Exogenous induction of the Escherichia coli hexose phosphate transport system defined by uhp-lac operon fusions. J Bacteriol 148:203–209
    [Google Scholar]
  42. Shattuck-Eidens D. M., Kadner R. J. 1983; Molecular cloning of the uhp region and evidence for a positive activator for expression of the hexose phosphate transport system of Escherichia coli. J Bacteriol 155:1062–1070
    [Google Scholar]
  43. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. 1989; A collection of stains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 53:1–24
    [Google Scholar]
  44. Southern E. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  45. Tyler B., Wishnow R., Loomis W. F., Magasanik B. 1969; Catabolite repression gene of Escherichia coli. J Baeteriol 100:809–816
    [Google Scholar]
  46. Weston L. A., Kadner R. J. 1987; Identification of Uhp polypeptides and evidence for their role in exogenous induction of the sugar phosphate transport system of Eseherichia coli K12. J Bacteriol 169:3546–3555
    [Google Scholar]
  47. Weston L. A., Kadner R. J. 1988; Role of uhp genes in expression of the Eseherichia coli sugar-phosphate transport system. J Baeteriol 170:3375–3383
    [Google Scholar]
  48. Winkler H. H. 1966; A hexose-phosphate transport system in Eseheriehia coli. Biochim Biophys Acta 117:231–240
    [Google Scholar]
  49. Yang J. K., Epstein W. 1983; Purification and characterization of adenylate cyclase from Escherichia coli K12. J Biol Chem 258:3750–3758
    [Google Scholar]
  50. Yang J. K., Bloom R. W., Epstein W. 1979; Catabolite and transient repression in Escherichia coli do not require Enzyme I of the phosphotransferase system. J Bacteriol 138:275–279
    [Google Scholar]
  51. Zeng G. Q., De Reuse H., Danchin A. 1992; Mutational analysis of the EnzymeIIIGlc of the phosphoenolpyruvate phosphotransferase system in Eseherichia coli. Res Microbiol 143:251–261
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-3-575
Loading
/content/journal/micro/10.1099/13500872-142-3-575
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error