1887

Abstract

The cyclic lipodepsipeptide syringomycin inhibits the growth of . A novel yeast gene, was found to complement two syringomycin-resistant mutants. was cloned, sequenced, and shown to encode a 349 amino acid protein located in the endoplasmic reticulum. was identical to which is involved in survival during nutritional starvation. Gene disruption or overexpression of did not affect cell viability or ergosterol levels, but did influence cellular phospholipid levels. The findings suggest that phospholipids are important for the growth inhibitory action of syringomycin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-477
1996-03-01
2021-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-477.html?itemId=/content/journal/micro/10.1099/13500872-142-3-477&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Meyers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Arthington B. A., Bennett L. G., Skatrud P. L., Guynn C. J., Barbuch R.J., Ulbright C. E., Bard M. 1991; Cloning, disruption, and sequence of the gene encoding yeast C-5 sterol desaturase. Gene 102:39–44
    [Google Scholar]
  3. Ballio A., Bossa F., Collina A., Gallo M., lacobellis N. S., Paci M., Pucci P., Scaloni A., Segre A., Simmaco M. 1990; Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringae pv. syringae . FEBS Lett 269:377–380
    [Google Scholar]
  4. Ballio A., Bossa F., Di Giorgio D., Ferranti P., Paci M., Scaloni A., Segre A., Strobel G. 1994; Novel bioactive lipo-depsipeptides from Pseudomonas syringae: the pseudomycins. FEBS Lett 355:96–100
    [Google Scholar]
  5. Becker D. M., Guarente L. 1991; Transformation of yeast by electroporation. Methods Enzymol 194:182–187
    [Google Scholar]
  6. Bidwai A. P., Takemoto J. Y. 1987; Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides. Proc Natl Acad SciUSA 846755–6759
    [Google Scholar]
  7. Bidwai A. P., Bachmann R. C., Takemoto J. Y. 1987; Mechanism of action of Pseudomonas syringae phytotoxin syringomycin. Plant Physiol 83:39–43
    [Google Scholar]
  8. Cooper T. G. 1977 The Tools of Biochemistry New York: John Wiley;
    [Google Scholar]
  9. Desfarges L., Durrens P., Jugelin H., Cassagne C., Bonneu M., Aigle M. 1993; Yeast mutants affected in viability upon starvation have a modified phospholipid composition. Yeast 9:267–277
    [Google Scholar]
  10. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 5:126–127
    [Google Scholar]
  11. Franke J., Podgorski G. J., Kessin R. H. 1987; The expression of two transcripts of the phosphodiesterase gene during development of Dictyostelium discoideum . Dev Biol 124:504–511
    [Google Scholar]
  12. Fukuchi N., Isogai A., Yamashita S., Suyama K., Takemoto J. Y., Suzuki A. 1990; Structure of phytotoxin syringomycin produced by a sugar cane isolate of Pseudomonas syringae pv syringae . Tetrahedron Lett 31:1589–1592
    [Google Scholar]
  13. Fukuchi N., Isogai A., Nakayama J., Takayama S., Yamashita S., Suyama K., Takemoto J. Y., Suzuki A. 1992; Structure and stereochemistry of three phytotoxins, syringomycin, syringotoxin and syringostatin, produced by Pseudomonas syringae pv. syringae . J Chem Soc Perkin Trans 1:1149–1157
    [Google Scholar]
  14. Gaynor E. C., Te Heesen S., Graham T. R., Aebi M., Emr S. D. 1994; Signal-mediated retrieval of a membrane protein from the golgi to the ER in yeast. J Cell Biol 127:653–665
    [Google Scholar]
  15. Gross D. C., DeVay J. E. 1977; Role of syringomycin in holcus spot of maize and systemic necrosis of cowpea caused by Pseudomonas syringae . Physiol Plant Pathol 11:1–11
    [Google Scholar]
  16. Guan K., Dixon J. E. 1991; Eukaryotic protein expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion protein with glutathione S-transferase. Anal Biochem 192:262–267
    [Google Scholar]
  17. Harlow E., Lane D. 1988 Antibodies-, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Ito H., Fukuda Y., Murata K., Kimura A. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168
    [Google Scholar]
  19. Julmanop C., Takano Y., Takemoto J. Y., Miyakawa T. 1993; Protection by sterols against the cytotoxicity of syringomycin in the yeast Saccharomyces cerevisiae . J Gen Microbiol 139:2323–2327
    [Google Scholar]
  20. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  21. LeGendre N., Matsudaira P. 1989; Purification of proteins and peptides. A Practical Guide to Protein and Peptide Purification for Microsequencing49–69 Matsudaira P. T. San Diego: Academic Press;
    [Google Scholar]
  22. Letourneur F., Gaynor F. C., Hennecke S., Demolliere C., Duden R., Emr S. D., Riezman H., Cosson P. 1994; Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–1207
    [Google Scholar]
  23. Liu Y., Ishii S., Tokai M., Tsutsumi H., Ohki O., Akada R., Tanaka K., Tsuchiya E., Fukui S., Miyakawa T. 1991; The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol & Gen Genet 227:52–59
    [Google Scholar]
  24. Marriot M., Tanner W. 1979; Localization of dolichyl phosphate- and pyrophosphate-dependent glycosyl transfer reaction in Saccharomyces cerevisiae . J Bacteriol 139:565–572
    [Google Scholar]
  25. Radin N. S. 1969; Preparation of lipid extracts. Methods Enzymol 14:245–254
    [Google Scholar]
  26. Romans P., Firtel R. A. 1985; Organization of the actin multigene family of Dictyostelium discoideum and analysis of variability in the protein coding regions. J Mol Biol 186:321–335
    [Google Scholar]
  27. Rose M. D., Broach J. R. 1991; Cloning genes by complementation in yeast. Methods Enzymol 194:195–230
    [Google Scholar]
  28. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. R. 1987; A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243
    [Google Scholar]
  29. Rose M. D., Winston F., Heiter P. 1990 Methods in Yeast Genetics-, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Rothstein R. J. 1983; One-step gene disruption in yeast. Methods Enzymol 101:202–211
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulsen A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad SciUSA 745463–5467
    [Google Scholar]
  33. Segre A., Bachmann R. C., Ballio A., Bossa G., Grgurina I., lacobellis N. S., Pucci P., Simmaco M., Takemoto J. Y. 1989; The structure of syringomycins A1, E and G. FEBS Lett 255:27–31
    [Google Scholar]
  34. Serrano R. 1983; In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14
    [Google Scholar]
  35. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene 67:31–40
    [Google Scholar]
  36. Suzuki Y. S., Wang Y., Takemoto J. Y. 1992; Syringomycin- stimulated phosphorylation of the plasma membrane H+-ATPase from red beet storage tissue. Plant Physiol 99:1314–1320
    [Google Scholar]
  37. Taguchi N., Takano Y., Julmanop C., Wang Y., Stock S., Takemoto J., Miyakawa T. 1994; Identification and analysis of the Saccharomyces cerevisiae SYR1 gene reveals that ergosterol is involved in the action of syringomycin. Microbiology 140:353–359
    [Google Scholar]
  38. Takemoto J. Y. 1992; Bacterial phytotoxin syringomycin and its interaction with host membranes. Molecular Signals in Plant-Microbe Communications247–260 Verma D. S. Boca Raton: CRC Press;
    [Google Scholar]
  39. Takemoto J. Y., Zhang L., Taguchi N., Tachikawa T., Miyakawa T. 1991; Mechanism of action of the phytotoxin syringomycin : a resistant mutant of Saccharomyces cerevisiae reveals an involvement of Ca2+ transport. J Gen Microbiol 137:653–659
    [Google Scholar]
  40. Takemoto J. Y., Yu Y., Stock S. D., Miyakawa T. 1993; Yeast genes involved in growth inhibition by Pseudomonas syringae pv. syringae family lipodepsipeptides. FEMS Lett 114:339–342
    [Google Scholar]
  41. Te Heesen S., Janetzky B., Lehle L., Aebi M. 1992; The yeast WBP1 is essential for oligosaccharyl transferase activity in vivo and in vitro . EMBO J 11:2071–2075
    [Google Scholar]
  42. Townsley F. M., Peiham H. R. B. 1994; The KKXX signal mediates retrieval of membrane proteins from the golgi to the ER in yeast. Eur J Cell Biol 64:211–216
    [Google Scholar]
  43. Zhang L., Takemoto J. Y. 1986; Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin. Interaction with the plasma membrane of wild-type and respiratory-deficient strains of Saccharomyces cerevisiae . Biochim Biophys Acta 861:201–204
    [Google Scholar]
  44. Zhang L., Takemoto J. Y. 1987; Effects of Pseudomonas syringae phytotoxin syringomycin on plasma membrane functions of Rhodotorula pilimanae . Phytopathology 77:297–303
    [Google Scholar]
  45. Zhang L., Takemoto J. Y. 1989; Syringomycin stimulation of potassium efflux by yeast cells. Biochim Biophys Acta 987:171–175
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-3-477
Loading
/content/journal/micro/10.1099/13500872-142-3-477
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error