High cAMP Levels Antagonize the Reprogramming of Gene Expression that Occurs at the Diauxic Shift in Free

Abstract

In order to analyse the involvement of the cAMP pathway in the regulation of gene expression in , we have examined the effect of cAMP on protein synthesis by using two-dimensional gel electrophoresis. cAMP had only a minor effect on the protein pattern of cells growing exponentially on glucose. However, it interfered with the changes in gene expression normally occurring upon glucose exhaustion in yeast cultures, maintaining a protein pattern typical of cells growing on glucose. This effect was accompanied by a delay before growth recovery on ethanol. We propose a model in which the cAMP-signalling pathway has a role in the maintenance of gene expression, rather than in the determination of a specific programme. A decrease of cAMP would then be required for metabolic transitions such as the diauxic phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-459
1996-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-459.html?itemId=/content/journal/micro/10.1099/13500872-142-3-459&mimeType=html&fmt=ahah

References

  1. Adams S. R., Harootunian A. T., Buechler Y. J., Taylor S. S., Tsien R. Y. 1991; Fluorescence ratio imaging of cyclic AMP in single cells. Nature 342:694–697
    [Google Scholar]
  2. Baroni M. D., Martegani E., Monti P., Alberghina L. 1989; Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae . Mol Cell Biol 9:2715–2723
    [Google Scholar]
  3. Bataillé N., Thoraval D., Boucherie H. 1988; Two-dimensional gel analysis of yeast proteins : application to the study of changes in the levels of major polypeptides of S. cerevisiae depending on the fermentable or non fermentable nature of the carbon source. Electrophoresis 9:774–780
    [Google Scholar]
  4. Bataillé N., Régnacq M., Boucherie H. 1991; Induction of a heat-shock-type response in Saccharomyces cerevisiae following glucose limitation. Yeast 7:367–378
    [Google Scholar]
  5. Bissinger P. H., Wieser R., Hamilton B., Ruis H. 1989; Control of Saccharomyces cerevisiae catalase gene (CTT1) expression by nutrient supply via the ras-cyclic AMP pathway. Mol Cell Biol 9:1309–1315
    [Google Scholar]
  6. Boorstein W. R., Craig E. A. 1990; Regulation of a yeast HSP70 by a cAMP responsive transcriptional control element. EMBO J 9:2543–2553
    [Google Scholar]
  7. Boucherie H. 1985; Protein synthesis during transition and stationary phases under glucose limitation. J Bacteriol 161:385–392
    [Google Scholar]
  8. Boucherie H., Dujardin G., Kermogant M., Monribot C., Slonimsky P., Perrot M. 1995; Two dimensional protein map of Saccharomyces cerevisiae : construction of a gene-protein index. Yeast 11:601–613
    [Google Scholar]
  9. Boy-Marcotte E., Garreau H., Jacquet M. 1987; Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae . Yeast 3:85–93
    [Google Scholar]
  10. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  11. Brindle P. K., Montminy M. R. 1992; The CREB family of transcription activators. Curr Opin Genet & Dev 2:199–204
    [Google Scholar]
  12. Camonis J. H., Kalékine M., Gondré B., Garreau H., Boy-Marcotte E., Jacquet M. 1986; Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae . EMBO J 5:375–380
    [Google Scholar]
  13. Cherry J. R., Johnson T. R., Dollard C., Shuster J. R., Denis C. L. 1989; Cyclic AMP dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56:409–419
    [Google Scholar]
  14. Daignan-Fornier B., Vallens M., Lemire B. D., Bolotin-Fukuhara M. 1988; In vivo functional characterization of a yeast nucleotide sequence: construction of a mini-Mu derivate adapted to yeast. Gene 62:45–54
    [Google Scholar]
  15. Denis C. L., Fontaine S. C., Chase D., Kemp B. E., Bemis L. T. 1992; ADR1 c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol Cell Biol 12:1507–1514
    [Google Scholar]
  16. Engelberg D., Klein C., Martinetto H., Struhl K., Karin M. 1994a; The UV response involving the Ras signalling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77:381–390
    [Google Scholar]
  17. Engelberg D., Zandi E., Parker C. S., Karin M. 1994b; The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol Cell Biol 14:4929–4937
    [Google Scholar]
  18. François J. M., Schaftingen E. V., Hers H. G. 1984; The mechanism by which glucose increases fructose-2,6-bisphosphate concentration in Saccharomyces cerevisiae A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem 145:187–193
    [Google Scholar]
  19. François J., Eraso P., Gancedo C. 1987; Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164:369–373
    [Google Scholar]
  20. François J. M., Thompson-Jaeger S., Skroch J., Zellenka U., Spevak W., Tatchell K. 1992; GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae . EMBO J 11:87–96
    [Google Scholar]
  21. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090
    [Google Scholar]
  22. Hardy T. A., Huang D., Roach P. J. 1994; Interactions between cAMP dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae . J Biol Chem 269:27907–27913
    [Google Scholar]
  23. Kataoka T., Powers S., McGill C., Fasano O., Strathern J., Broach J., Wigler M. 1984; Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–445
    [Google Scholar]
  24. Kinney A. J., Carman G. M. 1988; Phosphorylation of the yeast phosphatidylserine synthase in vivo and in vitro by cyclic AMP-dependent protein kinase. Proc Natl Acad SciUSA 857962–7966
    [Google Scholar]
  25. Klein C., Struhl K. 1994; Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol Cell Biol 14:1920–1928
    [Google Scholar]
  26. Lewis J. G., Northcott C. J., Learmonth R. P., Attfield P. V., Watson K. 1993; The need for consistent nomenclature and assessment of growth phases in diauxic cultures of Saccharomyces cerevisiae . J Gen Microbiol 139:835–839
    [Google Scholar]
  27. Marchler G., Schüller C., Adam G., Ruis H. 1993; A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003
    [Google Scholar]
  28. Matsumoto K., Uno I., Ishikawa T. 1985; Genetic analysis of the role of the cAMP in yeast. Yeast 1:15–24
    [Google Scholar]
  29. Russel M., Bradshaw-Rouse J., Markwardt D., Heideman W. 1993; Changes in gene expression in the Ras/adenylate cyclase system of S. cerevisiae: correlation with cAMP levels and growth. Mol Biol Cell 4:757–765
    [Google Scholar]
  30. Tanaka K., Matsumoto K., Toh-e A. 1988; Dual regulation of the expression of the polyubiquitin gene by cAMP and heat shock in yeast. EMBO J 7:495–502
    [Google Scholar]
  31. Tatchell K. 1993; RAS genes in the budding yeast Saccharomyces cerevisiae . Signal Transduction. Prokaryotic and Simple Eucaryotic Systems147–188 Kurjan J., Taylor B. L. San Diego: Academic Press;
    [Google Scholar]
  32. Thevelein J. M. 1984; Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59
    [Google Scholar]
  33. Thevelein J. M. 1994; Signal transduction in yeast. Yeast 10:1753–1790
    [Google Scholar]
  34. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. 1985; In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40:27–36
    [Google Scholar]
  35. Toda T., Cameron S., Sass P., Zoller M., Wigler M. 1987; Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287
    [Google Scholar]
  36. Tokiwa G., Tyers M., Volpe T., Futcher B. 1994; Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371:342–345
    [Google Scholar]
  37. Van Aelst L., Boy-Marcotte E., Camonis J. H., Thevelein J. M., Jacquet M. 1990; The C-terminal part of the CDC25 gene product plays a key role for signal transduction in the glucose-induced modulation of the cAMP level in Saccharomyces cerevisiae . Eur J Biochem 193:675–680
    [Google Scholar]
  38. Van Der Plaat J. B. 1974; Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in bakers’ yeast. Biochem Biophys Res Commun 56:580–587
    [Google Scholar]
  39. Watson C. D., Berry D. R. 1977; Fluctuations in cAMP levels during the cell cycle of Saccharomyces cerevisiae . FEMS Microbiol Lett 1:175–178
    [Google Scholar]
  40. Wilson R. R., Renault G., Jacquet M., Tatchell K. 1993; The pde2 gene of Saccharomyces cerevisiae is allelic to rca1 and encodes a phosphodiesterase which protects the cell from extracellular cAMP. FEBS Lett 325:191–195
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-3-459
Loading
/content/journal/micro/10.1099/13500872-142-3-459
Loading

Data & Media loading...

Most cited Most Cited RSS feed