1887

Abstract

Summary: The second aconitase (AcnB) of was partially purified from an mutant lacking AcnA, and the corresponding polypeptide identified by activity staining and weak cross-reactivity with AcnA antiserum. The gene was located at 2.85 min (131.6 kb) in a region of the chromosome previously assigned to two unidentified ORFs. Aconitase specific activities were amplified up to fivefold by infection with λ phages from the Kohara λ- gene library, and up to 120-fold (50% of soluble protein) by inducing transformants containing a plasmid (pGS783) in which the coding region is expressed from a regulated T7 promoter. The AcnB protein was purified to 98% homogeneity from a genetically enriched source (JRG3171) and shown to be a monomeric protein of 100000 (SDS-PAGE) and 105000 (gel filtration analysis) compared with 93500 predicted from the nucleotide sequence. The sequence identity between AcnA and AcnB is only 17% and the domain organization of AcnA and related proteins (1-2-3-linker-4) is rearranged in AcnB (4-1-2-3).

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-389
1996-02-01
2021-03-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-389.html?itemId=/content/journal/micro/10.1099/13500872-142-2-389&mimeType=html&fmt=ahah

References

  1. Bennett B., Gruer M. J., Guest J. R., Thomson A. J. 1995; Spectroscopic characterisation of an aconitase (AcnA) of Escherichia coli. Eur JBiochem 233:317–326
    [Google Scholar]
  2. Berlyn M. B., Low K. B., Rudd K. E. 1996; Integrated linkage map of Escherichia coli K-12, edition 9. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn.. Edited by Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W., Riley M., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Cole S. T., Guest J. R. 1980; Genetic and physical characterization of lambda transducing phages (XfrdA) containing the fumarate reductase gene of Escherichia coli K12. Mol & Gen Genet 178:409–418
    [Google Scholar]
  4. Emery-Goodman A., Hiding H., Scarpellino L, Henderson B., Kuhn L. 1993; Iron regulatory factor expressed from recombinant baculovirus: conversion between the RNA-binding apo-protein and Fe-S cluster containing aconitase. Nucleic Acids Res 21:1457–1461
    [Google Scholar]
  5. Fujita N., Mori H., Yura T., Ishihama A. 1994; Systematic sequencing of the Escherichia coli genome: analysis of the 2·4-4·l min (110,917-193,643 bp) region. Nucleic Acids Res 22:1637–1639
    [Google Scholar]
  6. Gray N. K., Quick S., Goossen B., Constable A., Hiding H., Kuhn L. C., Hentze M. W. 1993; Recombinant iron-regulatory factor functions as an iron-responsive-element-binding protein, a translational repressor and an aconitase. Eur J Biochem 218:657–667
    [Google Scholar]
  7. Gribskov M., Luthy R., Eisenberg D. 1990; Profile analysis. Methods Enzymol 183:146–159
    [Google Scholar]
  8. Grosjean H., Fiers W. 1982; Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209
    [Google Scholar]
  9. Gruer M. J., Guest J. R. 1994; Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140:2531–2541
    [Google Scholar]
  10. Guest J. R. 1992; Oxygen-regulated gene expression in Escherichia coli. J Gen Microbiol 138:2253–2263
    [Google Scholar]
  11. Guest J. R. 1995; The Leeuwenhoek Lecture, 1995. Adaptation to life without oxygen. Philos Trans R Soc Lond B Biol Sci 350:189–202
    [Google Scholar]
  12. Guo B., Yu Y., Leibold E. A. 1994; Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J Biol Chem 269:24252–24260
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  14. Henderson B. R., Seiser C., Kuhn L. C. 1993; Characterization of a second RNA-binding protein in rodents with specificity for iron-responsive elements. J Biol Chem 268:27327–27334
    [Google Scholar]
  15. Higgins D. G., Sharp P. M. 1989; Fast and sensitive multiple sequence alignments on a microcomputer. Comp Appl Biosci 5:151–153
    [Google Scholar]
  16. Hiding H., Henderson B. R., Kuhn L. C. 1994; Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J 13:453–461
    [Google Scholar]
  17. Kennedy M. C., Emptage M. H., Dreyer J.-L., Bienert H. 1983; The role of iron in the activation-inactivation of aconitase. J Biol Chem 258:11098–11105
    [Google Scholar]
  18. Khoroshilova N., Beinert H., Kiley P. J. 1995; Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci USA 92:2499–2503
    [Google Scholar]
  19. Klausner R. D., Rouault T. A. 1993; A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell 4:1–5
    [Google Scholar]
  20. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  22. Prodromou C., Haynes M. J., Guest J. R. 1991; The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). J Gen Microbiol 137:2505–2515
    [Google Scholar]
  23. Prodromou C., Artymiuk P. J., Guest J. R. 1992; The aconitase of Escherichia coli: nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate iso-merases. Eur J Biochem 204:599–609
    [Google Scholar]
  24. Reaney S. K., Begg G., Bungard S. J., Guest J. R. 1993; Identification of the L-tartrate dehydratase genes (ttdA and ttdB) of Escherichia coli and evolutionary relationship with the Class I fumarase genes. J Gen Microbiol 139:1523–1530
    [Google Scholar]
  25. Robbins A. H., Stout C. D. 1989; The structure of aconitase. Proteins 5:289–312
    [Google Scholar]
  26. Rosenthal E. R., Calvo J. M. 1990; The nucleotide sequence of leuC from Salmonella typhimurium. Nucleic Acids Res 18:3072
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schwartz R. M., Dayhoff M. O. 1979; Matrices for detecting distant relationships. Atlas of Protein Sequences and Structure353–358 Edited by Dayhoff M. O. Washington, DC: National Biomedical Research Foundation;
    [Google Scholar]
  29. Staden R. 1982; An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res 10:2951–2961
    [Google Scholar]
  30. Zheng L., Dean D. R. 1994; Catalytic formation of a nitrogenase iron-sulfur cluster. J Biol Chem 269:18723–18726
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-389
Loading
/content/journal/micro/10.1099/13500872-142-2-389
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error