1887

Abstract

Summary: An strain which is temperature-sensitive for growth due to a mutation(-2)causing a defective phosphoribosyl diphosphate(PRPP)synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp dIII-HII DNA fragment located within the open reading frame specifying the PRPP synthase polypeptide. Cloning and sequencing of the mutant allele revealed two mutations. One, a G→A transition, located in the ninth codon, was responsible for the temperature-conditional phenotype and resulted in a serine residue at this position. The wild-type codon at this position specified a glycine residue that is conserved among PRPP synthases across a broad phylogenetic range. Cells harbouring the glycine-to-serine alteration specified by a plasmid contained approximately 50% of the PRPP synthase activity of cells harbouring a plasmid-borne wildtype allele, both grown at 25°C. The mutant enzyme had nearly normal heat stability, as long as it was synthesized at 25°C. In contrast, there was hardly any PRPP synthase activity or anti-PRPP synthase antibody cross-reactive material present in cells harbouring the glycine to serine alteration following temperature shift to 42°C. The other mutation was aC→T transition located 39 bp upstream of the G→A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C→T mutation in a plasmid contained approximately three times as much PRPP synthase activity as a strain harbouring a plasmid-borne wild-type allele. In cells harbouring both mutations, the C→T mutation appeared to compensate for the G→A mutation by increasing the amount of a partially defective enzyme at the permissive temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-359
1996-02-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-359.html?itemId=/content/journal/micro/10.1099/13500872-142-2-359&mimeType=html&fmt=ahah

References

  1. Ahmad I., Ishijima S., Kita K., Tatibana M. 1994; Identification of amino-acid residues linked to different properties of phosphoribosylpyrophosphate synthetase isoforms I and II. Biochim Biophys Acta 1207:125–133
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  3. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heynecker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  4. Bower S. G., Hove-Jensen B., Switzer R. L. 1988; Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA) in Salmonella typhimurium. J Bacteriol 170:3243–3248
    [Google Scholar]
  5. Bower S. G., Harlow K. W., Switzer R. L., Hove-Jensen B. 1989; Characterization of the Escherichia coli prs A1 -encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site. J Biol Chem 264:10287–10291
    [Google Scholar]
  6. Clark D. J., Maaloe O. 1967; DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112
    [Google Scholar]
  7. Grandoni J. A., Switzer R. L., Makaroff C. A., Zalkin H. 1989; Evidence that the iron-sulfur cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines stability of the enzyme to degradation in vivo. J Biol Chem 264:6058–6064
    [Google Scholar]
  8. Harlow K. W., Switzer R. L. 1990; Chemical modification of Salmonella typhimurium phosphoribosylpyrophosphate synthetase with 5'(p-fluorosulfonylbenzoyl)adenosine. Identification of an active site histidine. J Biol Chem 265:5487–5493
    [Google Scholar]
  9. Hendrickson N., Allen T., Ullman B. 1993; Molecular characterization of phosphoribosylpyrophosphate synthetase from Leishmania donovani. Mol Biochem Parasitol 59:15–28
    [Google Scholar]
  10. Hove-Jensen B. 1983; Chromosomal location of the gene encoding phosphoribosylpyrophosphate synthetase in Escherichia coli. J Bacteriol 154:177–184
    [Google Scholar]
  11. Hove-Jensen B. 1985; Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. Mol & Gen Genet 201:269–276
    [Google Scholar]
  12. Hove-Jensen B. 1988; Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine and tryptophan in Escherichia coli. J Bacteriol 170:1148–1152
    [Google Scholar]
  13. Hove-Jensen B. 1989; Phosphoribosylpyrophosphate (PRPP)-less mutants of Escherichia coli. Mol Microbiol 3:1487–1492
    [Google Scholar]
  14. Hove-Jensen B., Nygaard P. 1982; Phosphoribosylpyrophosphate synthetase of Escherichia coli. Identification of a mutant enzyme. Eur J Biochem 126:327–332
    [Google Scholar]
  15. Hove-Jensen B., Harlow K. W., King C. J., Switzer R. L. 1986; Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J Biol Chem 261:6765–6771
    [Google Scholar]
  16. Jochimsen B. U., Hove-Jensen B., Garber B. B., Gots J. S. 1985; Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase. J Gen Microbiol 131:245–252
    [Google Scholar]
  17. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  18. Kushner S. R., Nagaishi H., Templin A., Clark A. J. 1971; Genetic recombination in Escherichia coli: the roles of exonuclease I. Proc Natl Acad Sci USA 68:824–827
    [Google Scholar]
  19. Lupski J. R., Ruiz A. A., Godson G. N. 1984; Promotion, termination, and anti-termination in the rpsU-dnaG-rpoD macro-molecular synthesis operon of E. coli K-12. Mol & Gen Genet 195:391–401
    [Google Scholar]
  20. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Nilsson D., Hove-Jensen B. 1987; Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene. Gene 53:247–255
    [Google Scholar]
  23. Nilsson D., Arnvig K., Hove-Jensen B. 1989; Primary structure of the tms and prs genes of Bacillus subtilis. Mol & Gen Genet 218:565–571
    [Google Scholar]
  24. Pandey N. K., Switzer R. L. 1982; Mutant strains of Salmonella typhimurium with defective phosphoribosylpyrophosphate synthetase activity. J Gen Microbiol 128:1863–1871
    [Google Scholar]
  25. Post D. A., Switzer R. L. 1991; prsB is an allele of the Salmonella typhimurium prs A gene: characterization of a mutant phosphoribosylpyrophosphate synthetase. J Bacteriol 173:1978–1986
    [Google Scholar]
  26. Post D. A., Hove-Jensen B., Switzer R. L. 1993; Characterization of the hemA-prs region of the Escherichia coli and Salmonella typhimurium chromosomes: identification of two open reading frames and implications for prs expression. J Gen Microbiol 139:259–266
    [Google Scholar]
  27. Roessler B. J., Bell G., Heidler S., Seino S., Becker M., Palella T. D. 1990; Cloning of two distinct copies of human phosphoribosylpyrophosphate synthetase cDNA. Nucleic Acids Res 18:193
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 71:5463–5467
    [Google Scholar]
  30. Shine J., Dalgarno L. 1974; The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 74:1342–1346
    [Google Scholar]
  31. Silhavy T. J., Berman M. L., Enquist L. W. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicin-choninic acid. Anal Biochem 150:76–85
    [Google Scholar]
  33. Switzer R. L., Gibson K. J. 1978; Phosphoribosylpyrophosphate synthetase (ribose-5-phosphate pyrophospho-kinase) from Salmonella typhimurium. Methods Envy mol 51:3–11
    [Google Scholar]
  34. Taira M., Ishijima S., Kita K., Yamada K., lizasa T., Tatibana M. 1987; Nucleotide and deduced amino acid sequences of two distinct cDNAs for rat phosphoribosylpyrophosphate synthetase. J Biol Chem 262:14867–14870
    [Google Scholar]
  35. Taira M., liaza T., Shimada H., Kudoh J., Shimizu N., Tatibana M. 1990; A human testis-specific mRNA for phosphoribosylpyrophosphate synthetase that initiates from a non-AUG codon. J Biol Chem 265:16491–16497
    [Google Scholar]
  36. Valentin-Hansen P., Svenningsen B. A., Munch-Petersen A., Hammer-Jespersen K. 1978; Regulation of the deo operon in Escherichia coli. The double negative control of the deo operon by the cytR and deoR repressors in a DNA directed in vitro system. Mol & Gen Genet 159:191–202
    [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-359
Loading
/content/journal/micro/10.1099/13500872-142-2-359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error