1887

Abstract

Summary: The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp /II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes and The level of DNA sequence similarity between these genes and those of the determinant of Tn21 was between 56.4 and 62.4%. A neighbourjoining phylogenetic tree of gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the /II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH operator/promoter (O/P) region has shown constitutive expression from the P promoter, which could be partially repressed by the presence of a -acting MerR protein from a Tn21-like determinant. This incomplete repression of P promoter activity may be due to the presence of an extra base between the −35 and −10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed P promoter could be restored by the addition of inducing levels of Hg ions. Using the polymerase chain reaction with primers designed to amplify regions in the and genes, 1.37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments.

Keyword(s): mer operon and pMERPH
Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-347
1996-02-01
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-347.html?itemId=/content/journal/micro/10.1099/13500872-142-2-347&mimeType=html&fmt=ahah

References

  1. Apelian D., Inouye S. 1990; Development-specific <r-factor essential for late-stage differentiation of Myxococcus xanthus. Genes & Dev 4:1396–1403
    [Google Scholar]
  2. Apelian D., Inouye S. 1993; A new putative sigma factor of Myxococcus xanthus. J Bacteriol 175:3335–3342
    [Google Scholar]
  3. Arnosti D. N., Chamberlin M. J. 1989; Secondary a factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc Natl Acad Sci USA 86:830–834
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. eds 1987 Current Protocols in Molecular Biology 1 New York: John Wiley and Sons;
    [Google Scholar]
  5. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  6. Boussiba S., Richmond A. 1980; C-Phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125:143–147
    [Google Scholar]
  7. Brahamsha B., Haselkorn R. 1991; Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173:2442–2450
    [Google Scholar]
  8. Brahamsha B., Haselkorn R. 1992; Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes. J Bacteriol 174:7273–7282
    [Google Scholar]
  9. Bryant D. A., Tandeau de Marsac N. 1988; Isolation of genes encoding components of the photosynthetic apparatus. Methods Enzymol 167:755–765
    [Google Scholar]
  10. Burton Z. F., Burgess R. R., Lin J., Moore D., Holder S., Gross C. A. 1981; The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E. coli K12. Nucleic Acids Res 9:2889–2903
    [Google Scholar]
  11. Burton Z. F., Gross C. A., Watanabe K. K., Burgess R. R. 1983; The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell 32:335–349
    [Google Scholar]
  12. Buzby J. S., Porter R. D., Stevens S. E. Jr 1983; Plasmid transformation in Agmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties. J Bacteriol 154:1446–1450
    [Google Scholar]
  13. Chang B. Y., Doi R. H. 1990; Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase σA factor. J Bacteriol 172:3257–3263
    [Google Scholar]
  14. Chater K. F., Bruton C. J., Plaskitt K. A., Buttner M. J., Mendez C., Helmann J. D. 1989; The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility a factor of B. subtilis. Cell 59:133–143
    [Google Scholar]
  15. Cowing D. W., Bardwell J. C. A., Craig E. A., Woolford C, Hendrix R. W., Gross C. A. 1985; Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci USA 82:2679–2683
    [Google Scholar]
  16. Curtis S. E., Martin J. A. 1994; The transcription apparatus and the regulation of transcription initiation. The Molecular Biology of Cyanobacteria613–639 Edited by Bryant D. A. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  17. Daley R. J., Brown S. R. 1973; Chlorophyll, nitrogen and photosynthetic patterns during growth and senescence of two blue-green algae. J Phycol 9:395–401
    [Google Scholar]
  18. Doolittle W. F. 1972; Ribosomal ribonucleic acid synthesis and maturation in the blue-green alga Anacystis nidulans. J Bacteriol 111:316–324
    [Google Scholar]
  19. Erickson J. W., Gross C. A. 1989; Identification of the σE subunit of Escherichia coli RNA polymerase: a second alternate σ factor involved in high-temperature gene expression. Genes & Dev 3:1462–1471
    [Google Scholar]
  20. Gasparich G. E. 1989; The effects of various environmental stress conditions on gene expression in the cyanobacterium Synechococcus sp. PCC 7002. PhD thesis The Pennsylvania State University;
    [Google Scholar]
  21. Gasparich G. E., Buzby J., Bryant D. A., Porter R. D., Stevens S. E. Jr 1987; The effects of light intensity and nitrogen starvation on the phycocyanin promoter in the cyanobacterium Synechococcus PCC 7002. Progress in Photosynthesis Research IV:761–764 Edited by Biggins J. Dordrecht: Martinus-Nijhoff Publishers;
    [Google Scholar]
  22. Golden S. S., Brusslan J., Haselkorn R. 1987; Genetic engineering of the cyanobacterial chromosome. Methods En^ymol 153:215–231
    [Google Scholar]
  23. Grossman A. D., Erickson J. W., Gross C. A. 1984; The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390
    [Google Scholar]
  24. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Hattori M., Sakaki Y. 1986; Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152:232–238
    [Google Scholar]
  26. Helmann J. D., Chamberlin M. J. 1988; Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872
    [Google Scholar]
  27. Helmann J. D., Marquez L. M., Chamberlin M. J. 1988; Cloning, sequencing and disruption of the Bacillus subtilis σ28 gene. J Bacteriol 170:1568–1574
    [Google Scholar]
  28. Hirschman J., Wong P.-K., Sei K., Keener J., Kustu S. 1985; Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate gin A transcription in vitro: evidence that the ntrA product is a σ factor. Proc Natl Acad Sci USA 82:7525–7529
    [Google Scholar]
  29. Hohn B., Collins J. 1980; A small cosmid for efficient cloning of large DNA fragments. Gene 11:291–298
    [Google Scholar]
  30. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197
    [Google Scholar]
  31. Inouye S. 1990; Cloning and DNA sequence of the gene coding for the major sigma factor from Myxococcus xanthus. J Bacteriol 172:80–85
    [Google Scholar]
  32. Kumano M., Tomioka N., Sugiura M. 1983; The complete nucleotide sequence of a 23S rRNA gene from a blue-green alga, Anacystis nidulans. Gene 24:219–225
    [Google Scholar]
  33. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  34. Lesley S. A., Burgess R. R. 1989; Characterization of the Escherichia coli transcription factor σ70: localization of a region involved in the interaction with core RNA polymerase. Biochemistry 28:7728–7734
    [Google Scholar]
  35. Lonetto M., Gribskov M., Gross C. A. 1992; The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849
    [Google Scholar]
  36. de Lorimier R., Bryant D. A., Porter R. D., Liu W.-Y., Jay E., Stevens S. E. Jr 1984; Genes for the a and P subunits of phycocyanin. Proc Natl Acad Sci USA 81:7946–7950
    [Google Scholar]
  37. McCann M. P., Kidwell J. P., Matin A. 1991; The putative a factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173:4188–1194
    [Google Scholar]
  38. Moran C. P. Jr 1993; RNA polymerase and transcription factors. Bacillus subtilis and Other Gram-positive Bacteria. Biochemistry, Physiology, and Molecular Genetics653–667 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Moran C. P. Jr, Lang N., LeGrice S. F. J., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol & Gen Genet 186:339–346
    [Google Scholar]
  40. Murphy R. C., Bryant D. A., Porter R. D., Tandeau de Marsac N. 1987; Molecular cloning and characterization of the recA gene from the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 169:2739–2747
    [Google Scholar]
  41. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353
    [Google Scholar]
  42. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  44. Schneider G. J., Haselkorn R. 1988; RNA polymerase subunit homology among cyanobacteria, other eubacteria, and archae-bacteria. J Bacteriol 170:4136–4140
    [Google Scholar]
  45. Schneider G. J., Lang J. D., Haselkorn R. 1991; Promoter recognition by the RNA polymerase from vegetative cells of the cyanobacterium Anabaena 7120. Gene 105:51–60
    [Google Scholar]
  46. Schyns G., Sobczyk A., Tandeau de Marsac N., Houmard J. 1994; Specific initiation of transcription at a cyanobacterial promoter with RNA polymerase purified from Calothrix sp. PCC 7601. Mol Microbiol 13:887–896
    [Google Scholar]
  47. Siegele D. A., Hu J. C., Walter W. A., Gross C. A. 1989; Altered promoter recognition by mutant forms of the σ70 subunit of Escherichia coli RNA polymerase. J Mol Biol 206:591–603
    [Google Scholar]
  48. Stevens S. E. Jr, van Baalen C. 1973; Characteristics of nitrate reduction in a mutant of the blue-green alga Agmenellum quadru-plicatum. Plant Physiol 51:350–356
    [Google Scholar]
  49. Stevens S. E. Jr, Balkwill D. L., Paone D. A. M. 1981; The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Arch Microbiol 130:204–212
    [Google Scholar]
  50. Stragier P., Losick R. 1990; Cascades of sigma factors revisited. Mol Microbiol 4:1801–1806
    [Google Scholar]
  51. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods En^ymol 185:60–89
    [Google Scholar]
  52. Tanaka K., Shiina T., Takahashi H. 1988; Multiple principal sigma factor homologs in eubacteria: identification of the ‘rpoD box’. Science 242:1040–1042
    [Google Scholar]
  53. Tanaka K., Shiina T., Takahashi H. 1992a; Multiple rpoD-related genes of cyanobacteria. Biosci Biotechnol Biochem 56:1113–1117
    [Google Scholar]
  54. Tanaka K., Shiina T., Takahashi H. 1992b; The complete nucleotide sequence of the gene (rpoD1) encoding the principal ct factor of the RNA polymerase from the cyanobacterium Synechococcus sp. strain PCC 7942. Biochim Biophys Acta 1132:94–96
    [Google Scholar]
  55. Tandeau de Marsac N., Cohen-Bazire G. 1977; Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74:1635–1639
    [Google Scholar]
  56. Tandeau de Marsac N., Houmard J. 1993; Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104:119–190
    [Google Scholar]
  57. Tomioka N., Sugiura M. 1983; The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Mol & Gen Genet 191:46–50
    [Google Scholar]
  58. de Vasconcelos L., Fay P. 1974; Nitrogen metabolism and ultrastructure in Anabaena cylindrica. I. The effect of nitrogen starvation. Arch Microbiol 96:271–279
    [Google Scholar]
  59. Waldburger C., Gardella T., Wong R., Susskind M. M. 1990; Changes in conserved region 2 of Escherichia coli σ70 affecting promoter recognition. J Mol Biol 215:267–276
    [Google Scholar]
  60. Wang L-F, Doi R. H. 1986; Nucleotide sequence and organization of Bacillus subtilis RNA polymerase major sigma (σ43) operon. Nucleic Acids Res 14:4293–4307
    [Google Scholar]
  61. Wiggs J. L., Gilman M. Z., Chamberlin M. J. 1981; Heterogeneity of RNA polymerase in Bacillus subtilis: evidence for additional ct factor in vegetative cells. Proc Natl Acad Sci USA 78:2762–2766
    [Google Scholar]
  62. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-2-347
Loading
/content/journal/micro/10.1099/13500872-142-2-347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error