1887

Abstract

Summary: The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp /II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes and The level of DNA sequence similarity between these genes and those of the determinant of Tn21 was between 56.4 and 62.4%. A neighbourjoining phylogenetic tree of gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the /II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH operator/promoter (O/P) region has shown constitutive expression from the P promoter, which could be partially repressed by the presence of a -acting MerR protein from a Tn21-like determinant. This incomplete repression of P promoter activity may be due to the presence of an extra base between the −35 and −10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed P promoter could be restored by the addition of inducing levels of Hg ions. Using the polymerase chain reaction with primers designed to amplify regions in the and genes, 1.37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments.

Keyword(s): mer operon and pMERPH
Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-337
1996-02-01
2019-12-06
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-337
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error