1887

Abstract

Summary: A novel methylotroph, strain M2, capable of utilizing methanesulfonic acid (MSA) as a sole source of carbon and energy was the subject of these investigations. The initial step in the biodegradative pathway of MSA in strain M2 involved an inducible NADH-specific monooxygenase enzyme (MSAMO). Partial purification of MSAMO from cell-free extracts by ion-exchange chromatography led to the loss of MSAMO activity. Activity was restored by the mixing of three distinct protein fractions designated A, B and C. The reconstituted enzyme had a narrow substrate specificity relative to crude cell-free extracts. Addition of FAD and ferrous ions to the reconstituted enzyme complex resulted in a fivefold increase in enzyme activity, suggesting the loss of FAD and ferrous ion from the multicomponent enzyme on purification. Analysis of mutants of strain M2 defective in the metabolism of C compounds indicated that methanol was not an intermediate in the degradative pathway of MSA and also confirmed the involvement of a multicomponent enzyme in the degradation of MSA by methylotroph strain M2.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-251
1996-02-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-251.html?itemId=/content/journal/micro/10.1099/13500872-142-2-251&mimeType=html&fmt=ahah

References

  1. Andreae M. O. 1986; The ocean as a source of atmospheric sulfur compounds. The Role of Air-Sea Exchange in Geochemical Cycling331–362 Edited by Buat-Menard P. New York: Reidel;
    [Google Scholar]
  2. Baker S. C., Kelly D. P., Murrell J. C. 1991; Microbial degradation of methanesulfonic acid: a missing link in the biogeochemical sulfur cycle. Nature 350:627–628
    [Google Scholar]
  3. Bateman T. J., Dodgson K. S., White G. F. 1986; Primary alkylsulfatase activities of the detergent-degrading bacterium Pseudomonas C12B. Purification and properties of the PI enzyme. Biochem J 236:401–408
    [Google Scholar]
  4. Biedlingmaier S., Schmidt A. 1983; Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca. Arch Microbiol 136:124–139
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Cloves J. M., Dodgson K. S., White G. F., Fitzgerald J. W. 1980; Purification and properties of the P2 primary alkyl-sulfohydrolase of the detergent-degrading bacterium Pseudomonas C12B. Biochem J 185:23–31
    [Google Scholar]
  7. Cook A. M., Hotter R. 1982; Ametryne and prometryne as sulfur sources for bacteria. Appl Environ Microbiol 43:781–786
    [Google Scholar]
  8. Day D. J., Anthony C. 1990; Methanol dehydrogenase from Methylobacterium extorquens AMI. Methods Enzymol 188:210–215
    [Google Scholar]
  9. Dickson D. M. J., Wyn Jones R. G., Davenport J. 1982; Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes. Planta 155:409–415
    [Google Scholar]
  10. Dijkstra M., Frank J., Jongejan J. A., Duine J. A. 1984; Inactivation of quinoprotein alcohol dehydrogenases with cyclopropane-derived suicide substrates. Eur J Biochem 140:369–373
    [Google Scholar]
  11. Green J., Dalton H. 1989; Substrate specificity of soluble methane monooxygenase. J Biol Chem 264:17698–17703
    [Google Scholar]
  12. Haigler B. E., Gibson D. T. 1990; Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIMB 9816. J Bacteriol 172:457–464
    [Google Scholar]
  13. Higgins T. P., Snape J. R., White G. F. 1993; Comparison of pathways for biodegradation of monomethyl sulphate in Agro-bacterium and Hyphomicrobium species. J Gen Microbiol 139:2915–2920
    [Google Scholar]
  14. Johnston J. B., Murray K., Cain R. B. 1975; Microbial metabolism of aryl sulfonates. A re-assessment of colorimetric methods for the determination of sulfite and their use in measuring desulfonation of aryl and alkylbenzene sulfonates. Antonie Leeu-wenhoek 41:493–511
    [Google Scholar]
  15. Junker F., Field J. A., Bangerter F., Ramsteiner K., Kohler H. P., Joannou C. L., Mason J. R., Leisinger T., Cook A. M. 1994; Oxygenation and spontaneous deamination of 2-aminobenzenesulfonic acid in Alcaligenes sp. strain 0-1 with subsequent meta ring cleavage and spontaneous desulfonation to 2-hydroxymuconic acid. Biochem J 300:429–436
    [Google Scholar]
  16. Kanagawa T., Dazai M., Fukuoka S. 1982; Degradation of 0,0-dimethyl phosphorothioate by Thiobacillus thioparus TK-1 and Pseudomonas AK-2. Agric Biol Chem 46:2571–2575
    [Google Scholar]
  17. Keller M. D., Bellows W. K., Guillard R. L. 1989; Dimethyl sulfide production in marine phytoplankton. Biogenic Sulfur in the Environment167–182 Edited by Saltzman E. S., Cooper W. J. Washington, DC: American Chemical Society;
    [Google Scholar]
  18. Kelly D. P., Smith N. A. 1990; Organic sulfur compounds in the environment. Biogeochemistry, microbiology and ecological aspects. Adv Microb Ecol 11:345–385
    [Google Scholar]
  19. Kelly D. P., Malin G., Wood A. P. 1993; Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulfur, nitrogen or halogens. Microbial Growth on C1 Compounds47–63 Edited by Murrell J. C., Kelly D. P. Andover: Intercept;
    [Google Scholar]
  20. Kelly D. P., Baker S. C., Trickett J., Davey M., Murrell J. C. 1994; Methanesulphonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140:1419–1426
    [Google Scholar]
  21. Kertesz M. A., Cook A. M., Leisinger T. 1994; Microbial metabolism of sulfur- and phosphorous-containing xenobiotics. FEMS Microbiol Rev 15:195–215
    [Google Scholar]
  22. Kiene R. P. 1993; Microbial sources and sinks for methylated sulfur compounds in the marine environment. Microbial Growth on Cx Compounds15–33 Edited by Murrell J. C., Kelly D. P. Andover: Intercept;
    [Google Scholar]
  23. Kirst G. O., Thiel C, Wolff H., Nothnagel J., Wanzek M., Ulmke R. 1991; Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role. Mar Chem 35:381–388
    [Google Scholar]
  24. Krauss F., Schmidt A. 1987; Sulphur sources for the growth of Chlorella fusca and their influence on key enzymes of sulphur metabolism. J Gen Microbiol 133:1209–1219
    [Google Scholar]
  25. Leidner H., Gloor R., Wuest D., Wuhrmann K. 1980; The influence of the sulfonic group on the biodegradability of n-alkylbenzene sulfonates. Xenobiotica 10:47–56
    [Google Scholar]
  26. Lipscombe J. D. 1994; Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399
    [Google Scholar]
  27. Locher H. H., Leisinger T., Cook A. M. 1991; 4-Toluene sulfonate methyl-monooxygenase from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 173:3741–3748
    [Google Scholar]
  28. Mason J. R., Cammack R. 1992; The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305
    [Google Scholar]
  29. Matts P. J., White G. F., Payne W. J. 1994; Purification and characterisation of the short-chain alkylsulfatase of coryneform Bla. Biochem J 304:937–943
    [Google Scholar]
  30. Powolowski J., Shingler V. 1994; Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5:219–236
    [Google Scholar]
  31. Quick A., Russell N. J., Hales S. G., White G. F. 1994; Biodegradation of sulphosuccinate: direct desulphonation of a secondary sulphonate. Microbiology 140:2991–2998
    [Google Scholar]
  32. Romanov V., Hausinger R. P. 1994; Pseudomonas aeruginosa 142 uses a three-component orAfo-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate. J Bacteriol 176:3368–3374
    [Google Scholar]
  33. Schlafli H. R., Weiss M. A., Leisinger T., Cook A. M. 1994; Terphthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176:6644–6652
    [Google Scholar]
  34. Subramanian V., Liu T.-N., Yeh W.-K., Narro M., Gibson D. T. 1981; Purification and properties of NADH-ferredoxinTOL reductase. A component of toluene dioxygenase from Pseudomonas putida. J Biol Chem 256:2723–2730
    [Google Scholar]
  35. Subramanian V., Liu T.-N., Yeh W.-K., Serder C. M., Wackett L. P., Gibson D. T. 1985; Purification and properties of ferredoxinTOL. A component of toluene dioxygenase from Pseudomonas putida Fl. J Biol Chem 260:2355–2363
    [Google Scholar]
  36. Thysse G. J. E., Wanders T. H. 1974; Initial steps in the degradation of n-alkane-1 -sulfonates by Pseudomonas. Antonie Lseuwenhoek 40:25–37
    [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354
    [Google Scholar]
  38. Tuovinen O. H., Kelly D. P. 1973; Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison of 14CO2-fixation and iron oxidation as measures of growth. Arch Microbiol 88:285–298
    [Google Scholar]
  39. Uria-Nickelsen M. R., Leadbetter E. R., Godchaux W. III 1993a; Sulphonate utilization by enteric bacteria. J Gen Microbiol 139:203–208
    [Google Scholar]
  40. Uria-Nickelsen M. R., Leadbetter E. R., Godchaux W. III 1993b; Sulfonate-sulfur assimilation by yeasts resembles that of bacteria. FEMS Microbiol Lett 114:73–78
    [Google Scholar]
  41. Visscher P. T., van Gemerden H. 1991; Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol 57:3237–3242
    [Google Scholar]
  42. Wagner F. C., Reid E. E. 1931; The stability of the carbon-sulfur bond in some aliphatic sulfonic acids. J Am Chem Soc 53:3407–3413
    [Google Scholar]
  43. White G. F., Russell N. J. 1993; Biodegradation of anionic surfactants and related compounds. Biochemistry of Microbial Degradation143–177 Edited by Ratledge C. Dordrecht: Kluwer;
    [Google Scholar]
  44. White G. F., Dodgson K. S., Davies I., Matts P. J., Shapleigh J. P., Payne W. J. 1987; Bacterial utilisation of short-chain primary alkyl sulfate esters. FEMS Microbiol Lett 40:173–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-251
Loading
/content/journal/micro/10.1099/13500872-142-2-251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error