The gene of 168, expressed during exponential growth, encodes a cell-wall-associated protease Free

Abstract

Summary: The nucleotide sequence of a protease-encoding gene of 168, is reported. The gene, expressed during the exponential growth phase, belongs to a monocistronic operon. WprA is a 96 kDa polypeptide endowed with a signal peptide, as well as a propeptide. Upon processing and export, it gives rise to two previously identified cell-wall-bound proteins, CWBP23 and 52. Processing of WprA exhibits a novel feature of protein export, whereby removal of the middle part of the molecule accompanies the targeting to the cell wall of its N- and C-terminal parts, which correspond to CWBP23 and 52, respectively. Sequence analyses and enzymic assays reveal that CWBP52 is a serine protease. Growth rate, cell morphology, sporulation and motility of mutants apparently do not differ from those of the parent strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-12-3437
1996-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/12/mic-142-12-3437.html?itemId=/content/journal/micro/10.1099/13500872-142-12-3437&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Anagnostopoulos C., Piggot P. J., Hoch J. A. 1993; The genetic map of Bacillus subtilis. In Bacillus subtilis and Other Grampositive bacteria pp. 425–461 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  3. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 862172–2175
    [Google Scholar]
  4. Condon C., Putzer H., Grunberg-Manago M. 1996; Processing of the leader mRNA plays a major role in the induction of expression following threonine starvation in Bacillus subtilis. Proc Natl Acad Sci USA 936992–6997
    [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  6. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13
    [Google Scholar]
  7. Foster S. J. 1991; Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 137:1987–1998
    [Google Scholar]
  8. Foster S. J. 1993; Molecular analysis of three major wall- associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol Microbiol 8:299–310
    [Google Scholar]
  9. Gierash L. M. 1989; Signal sequences. Biochemistry 28:923–930
    [Google Scholar]
  10. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 12:4683–4690
    [Google Scholar]
  11. Jacobs M., Eliasson M., Uhlen M., Flock J. I. 1985; Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8926
    [Google Scholar]
  12. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Mol Gen Genet 108:277–287
    [Google Scholar]
  13. Koide Y., Nakamura A., Uozumi T., Beppu T. 1986; Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. J Bacteriol 167:110–116
    [Google Scholar]
  14. Kiwaki M., Ikemura H., Shimizu-Kadota M., Hirashima A. 1989; Molecular characteriation of a cell wall-associated proteinase gene from Streptococcus lactis NCD0763. Mol Microbiol 3:359–3569
    [Google Scholar]
  15. Kuroda A., Sekiguchi J. 1990; Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J Gen Microbiol 136:2209–2216
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  17. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961
    [Google Scholar]
  18. Longchamp P. F., Mauél C., Karamata D. 1994; Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetyl- muramoyl-L-alanine amidase gene of prophage PBSX. Microbiology 140:1855–1867
    [Google Scholar]
  19. Margot P., Mauél C., Karamata D. 1994; The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545
    [Google Scholar]
  20. Mauél C., Young M., Margot P., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol Gen Genet 215:388–394
    [Google Scholar]
  21. Meloun B., Baudys M., Kostka V., Hausdorf G., Frommel G., Hohnem W. E. 1985; Complete primary structure of thermitase from Thermoactinomyces vulgaris and its structural features related to the subtilisin-type proteinase. FEBS Lett 183:195–200
    [Google Scholar]
  22. Monod M. 1992; Isolation of Aspergillus fumigatus genes using oligonucleotide probes. In Molecular Biology of Pathogenic Fungi. Laboratory Manual pp. 33–40 Edited by Maresca B., Kobayashi G. S. New York:: Telos Press;
    [Google Scholar]
  23. Ohta Y., Hojo H., Aimoto S., Kobayashi T., Zhu X., Jordan F., Inouye M. 1991; Pro-peptide as an intermolecular chaperone: renaturation of denatured subtilisin E with a synthetic pro-peptide. Mol Microbiol 5:1507–1510
    [Google Scholar]
  24. Oultram J. D., Peck H., Brehm J. K., Thompson D., Swinfiel T. J., Minton N. P. 1988; Introduction of genes for leucine biosynthesis from Clostridium pasteurianum into Clostridium aceto-butylicum. Mol Gen Genet 214:177–179
    [Google Scholar]
  25. Pero J., Sloma A. 1993; Proteases. In Bacillus subtilis and Other Gram-Positive Bacteria pp. 939–952 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  26. Pollock M. R. 1965; Purification and properties of penicillinases from two strains of Bacillus licheniformis: a chemical, physiochemical and physiological comparison. Biochemistry 94:666–675
    [Google Scholar]
  27. Pooley H. M. 1976; Layered distribution, according to age, within the cell wall of Bacillus subtilis. J Bacteriol 125:1139–1147
    [Google Scholar]
  28. Reed K. C., Mann D. A. 1985; Rapid transfer of DNA from agarose gel to nylon membranes. Nucleic Acids Res 13:7207–7221
    [Google Scholar]
  29. Rogers H. J., Perkins H. R., Ward J. B. 1980 Microbial Cell Walls and Membranes. London:: Chapman & Hall;
    [Google Scholar]
  30. Roten C. -A., Pagni M., Margot P., Touri F., Karamata D. 1994; Specific labeling of diaminopimelate: a radioassay for the determination of the peptidoglycan cross-linking index. Anal Biochem 223:208–211
    [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  32. Schaeffer P., Millet J., Aubert J. P. 1965; Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711
    [Google Scholar]
  33. Schlaeppi J. M., Pooley H. M., Karamata D. 1982; Identification of cell wall subunits in Bacillus subtilis and analysis of their segregation during growth. J Bacteriol 149:329–337
    [Google Scholar]
  34. Schneewind O., Jones K. F., Fischetti V. A. 1990; Sequence and structural characteristics of the trypsin-resistant T6 surface protein of group A streptococci. J Bacteriol 172:3310–3317
    [Google Scholar]
  35. Sekiguchi J., Akeo K., Yamamoto H., Khasanov F. K., Alonso J. C., Kuroda A. 1995; Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacteriol 177:5582–5589
    [Google Scholar]
  36. Serror P., Azevedo V., Ehrlich S. D. 1993; An ordered collection of Bacillus subtilis DNA segments in yeast artificial chromosomes. In Bacillus subtilis and Other Gram-positive Bacteria pp. 473–474 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  37. sleytr U. B., Messner P. 1988; Crystalline surface layers in procaryotes. J Bacteriol 170:2891–2897
    [Google Scholar]
  38. Sloma A., Ally A., Ally D., Pero J. 1988; Gene encoding a minor extracellular protease in Bacillus subtilis. J Bacteriol 170:5557–5563
    [Google Scholar]
  39. Smith T. J., Foster S. J. 1995; Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis168. J Bacteriol 177:3855–3862
    [Google Scholar]
  40. Southern E. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  41. Stahl M. L., Ferrari E. 1984; Replacement of the Bacillus subtilissubtilisin structural gene with an in vitro-derived deletion mutation. J Bacteriol 158:411–418
    [Google Scholar]
  42. Studer R. E. 1988 Caracterisation de la paroi native de Bacillus subtilis etude des proteines qui lui sont associees These de doctorat, Universite de Lausanne.
    [Google Scholar]
  43. Cell wall proteins in Bacillus subtilis. In Antibiotic Inhibition of Bacterial Cell Surface Assembb and Fgnction pp. 146–150 Edited by Actor P., Daneo-Moore L., Higgins M. L., Salton M. R. G., Shockman G. D. Washington, DC:: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-12-3437
Loading
/content/journal/micro/10.1099/13500872-142-12-3437
Loading

Data & Media loading...

Most cited Most Cited RSS feed