1887

Abstract

Summary: Many strains of produce zwittermicin A, a novel antibiotic that contributes to the ability of to suppress certain plant diseases. The purpose of this study was to identify molecular indicators of zwittermicin A production in strains, contribute to an understanding of the ecology and evolution of this group of bacteria, and identify potential agents for control of plant disease. The fatty acid composition of 20 strains known to be zwittermicin A producers and 20 strains known to be non-producers was determined. Cluster analysis of the fatty acid methyl ester (FAME) profiles revealed that zwittermicin A producers grouped together in two clusters, apart from most non-producers. Discriminant analysis of the FAME profiles generated models that correctly predicted the zwittermicin A-production phenotype in 17 of 20 zwittermicin A producers and 17 of 20 non-producers. Sixteen random oligonucleotide primers were tested in PCR, and one primer was identified that generated a fragment of 0·48 kb or 0.49 kb from total DNA from 26 of 28 strains known to produce zwittermicin A, whereas PCR with this primer did not generate bands of that size from 16 of 20 non-producing strains. PCR with primers designed to amplify a gene from that confers resistance to zwittermicin A, generated DNA fragments of 1·1 kb and 1·0 kb in all 29 zwittermicin A-producing strains tested, amplified a fragment of 0·3 kb in some of the zwittermicin A-producing strains, and amplified no fragments in 20 of 23 non-producing strains in a stock collection of strains. The primers were tested for their ability to identify new zwittermicin A-producing isolates of from two soils. All 12 of the isolates that produced the banding pattern characteristic of this primer pair produced zwittermicin A, and none of the 12 isolates that did not have the banding pattern produced detectable zwittermicin A. Seven of the 12 isolates initially identified as zwittermicin A producers with the primers significantly suppressed damping-off of alfalfa, whereas only one of the non-producers suppressed this disease. The results show that FAME and PCR analyses distinguish strains that produce zwittermicin A from other strains, that PCR with the primers designed to amplify is the most reliable method of those tested for identification of zwittermicin A producers, and that this method can be used to identify new strains with disease-suppressive activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-12-3425
1996-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/12/mic-142-12-3425.html?itemId=/content/journal/micro/10.1099/13500872-142-12-3425&mimeType=html&fmt=ahah

References

  1. Abel K., DeSchmertzing H., Peterson J. I. 1962; Classification of microorganisms by analysis of chemical composition I. Feasibility of gas chromatography. J Bacteriol 85:1039–1044
    [Google Scholar]
  2. Andersen G. L., Simchock J. M., Wilson K. H. 1996; Identification of a region of genetic variability among Bacillus anthracisstrains and related species. J Bacteriol 178:377–384
    [Google Scholar]
  3. Angus T. A., Norris J. R. 1968; A comparison of the toxicity of some varieties of Bacillus thuringiensis Berliner for silkworm larvae. J Invertebr Pathol 11:289–295
    [Google Scholar]
  4. AquinodeMuro M., Mitchell W. J., Priest F. G. 1992; Differentiation of mosquito-pathogenic strains of Bacillus sphaericus from non-toxic varieties of ribosomal RNA gene restriction patterns. J Gen Microbiol 138:1159–1166
    [Google Scholar]
  5. Arantes O., Leredus D. 1991; Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119
    [Google Scholar]
  6. Ash C., Farrow J. A. E., Dorsch M., Stackebrandt E., Collins M. D. 1991a; Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Sjst Bacteriol 41:343–346
    [Google Scholar]
  7. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991b; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  8. Assmus B., Hutzler P., Kirchhof G., Amann R., Lawrence J. R., Hartmann A. 1995; In situ localization of A^ospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA- targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019
    [Google Scholar]
  9. Hartmann A. 1995; In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNAtargeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019
    [Google Scholar]
  10. de Barjac H. 1985; Serological classification of Bacillus sphaericus strains on the basis of toxicity to mosquito larvae. Appl Microbiol Biotechnol 21:85–90
    [Google Scholar]
  11. Bej A. K., Mahbubani M. H., Boyce M. J., Atlas R. M. 1994; Detection of Salmonella spp. in oysters by PCR. Appl Environ Microbiol 60:368–373
    [Google Scholar]
  12. Böddinghaus B., Rogall T., Flohr T., Blöcker H., Böttger E. C. 1990; Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol 28:1751–1759
    [Google Scholar]
  13. Brand J. M., Bracke J. W., Markovetz A. J., Wood D. L., Browne L. E. 1975; Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 254:136–137
    [Google Scholar]
  14. Carlson C. R., Kolstø A. -B. 1994; A small (2·4 Mb) Bacillus cereus chromosome corresponds to a conserved region of a larger (5·3 Mb) Bacillus cereus chromosome. Mol Microbiol 13:161–169
    [Google Scholar]
  15. Carlson C. R., Caugant D. A., Kolstø A. -B. 1994; Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725
    [Google Scholar]
  16. Carlton B. C. 1993; Development of improved bioinsecticides based on Bacillus thuringiensis. In Pest Control with Enhanced Environmental Safety pp. 258–266 Edited by Duke. S. O., Menn. J. J., Plimmer. J. R. Washington, DC: American Chemical Society;
    [Google Scholar]
  17. Chase A. R., Stall R. E., Hodge N. C., Jones J. B. 1992; Characterization of Xanthomonas campestris strains from aroids using physiological, pathological, and fatty acid analyses. Phytopathology 82:754–759
    [Google Scholar]
  18. Claus D., Berkeley R. C. W. 1986; Genus Bacillus. In Bergey’s Manual of Systematic Bacteriology 2 pp. 1105–1139 Edited by Sneath P. H. A., Mair. N. S., Sharpe. M. E., Holt J. G. Baltimore, MD: Williams and Wilkins;
    [Google Scholar]
  19. Darrasse A., Priou S., Kotoujansky A., Bertheau Y. 1994; PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl Environ Microbiol 60:1437–1443
    [Google Scholar]
  20. DeBoer S. H., Sasser M. 1986; Differentiation of Erwinia carotovora ssp.carotovora and E. carotovora ssp.atroseptica on the basis of cellular fatty acid composition. Can J Microbiol 32:796–800
    [Google Scholar]
  21. DeLong E. R., Wickham G. S., Pace N. R. 1989; Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363
    [Google Scholar]
  22. Dreier J., Bermpohl A., Eichenlaub R. 1995; Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp.michiganensis. Phytopathology 85:462–468
    [Google Scholar]
  23. Dulmage H. T. 1970; Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var alesti. J Invertebr Pathol 15:232–239
    [Google Scholar]
  24. Dunnett C. W. 1955; A multiple comparisons procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121
    [Google Scholar]
  25. Feitelson J. S., Payne J., Kim L. 1992; Bacillus thuringiensis: insects and beyond. Bio I Technology 10:271–275
    [Google Scholar]
  26. Frachon E., Hamon S., Nicolas L., de Barjac H. 1991; Cellular fatty acid analysis as a potential tool for predicting mosquitocidal activity of Bacillus sphaericus strains. Appl Environ Microbiol 57:3394–3398
    [Google Scholar]
  27. Fravel D. R., Spurr H. W. 1977; Biocontrol of tobacco brown-spot disease by Bacillus cereus subsp.mycoides in a controlled environment. Phytopathology 67:930–932
    [Google Scholar]
  28. Giesendorf B. A. J., Quint W. G. V., Henkens M. H. C., Stegeman H., Huf F. A., Niesters H. G. M. 1992; Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction. Appl Environ Microbiol 58:3804–3808
    [Google Scholar]
  29. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. 1988; Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726
    [Google Scholar]
  30. Goldberg L. J., Margalit J. 1977; A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358
    [Google Scholar]
  31. Goodlow R. J., Johnson C. W., Shafer M. V. 1947; The antagonistic effect of Bacillus cereus. J Bacteriol 54:268–269
    [Google Scholar]
  32. Gordon R. E. 1975; Some taxonomic observations on the genus Bacillus. In Biological Regulation of Vectors: the Saprophytic and Aerobic Bacteria and Fungi pp. 67–82 Edited by Briggs. J. D. Easton, MD: US Department of Health and Human Services;
    [Google Scholar]
  33. Grewal P. S., Hand P. 1992; Effects of bacteria isolated from a saprophagous rhabditid nematode Caenorhabditis elegans on the mycelial growth of Agaricus bisporus. J Appl Bacteriol 72:173–179
    [Google Scholar]
  34. Gustafson GE., Thomas C. J., Trust T. J. 1992; Detection of Aeromonas salmonicida from fish by using polymerase chain reaction amplification of the virulence surface array protein gene. Appl Environ Microbiol 58:3816–3825
    [Google Scholar]
  35. Hahn D., Amann R. I., Ludwig W., Akkermans A. D. L., Schleifer K. -H. 1992; Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol 138:879–887
    [Google Scholar]
  36. Hallaksela A. -M., Väisänen O., Salkinoja-Salonen M. 1991; Identification of Bacillus species isolated from Picea abies by physiological tests, phage typing, and fatty acid analysis. Scand J For Res 6:365–377
    [Google Scholar]
  37. Halverson L. J., Clayton M. K., Handelsman J. 1993; Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol Biochem 25:485–493
    [Google Scholar]
  38. Handelsman J., Raffel S., Mester E. H., Wunderlich L., Grau C. R. 1990; Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718
    [Google Scholar]
  39. Handelsman J., Nesmith W. S., Raffel S. J. 1991; Microassay for biological and chemical control of infection of tobacco by Phytophthora parasitica var.nicotianae. Curr Microbiol 22:317–319
    [Google Scholar]
  40. He H., Silo-Suh L. A., Handelsman J., Clardy J. 1994; Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 35:2499–2502
    [Google Scholar]
  41. Höfte H., Whiteley H. R. 1989; Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255
    [Google Scholar]
  42. Kamogashira T., Takegata S., Sugiura K. 1988; Isolation of tunicamycin produced by Bacillus cereus K-279. Agric Biol Chem 52:859–861
    [Google Scholar]
  43. Kaneda T. 1968; Fatty acids of the genus Bacillus. II. Similarity in the fatty acid compositions of Bacillus thuringiensis, Bacillus anthracis, and Bacillus cereus. J Bacteriol 95:2210–2216
    [Google Scholar]
  44. Keel C., Weller D. M., Natsch A., DeFago G., Cook R. J., Thomashow L. S. 1996; Conservation of the 2,4-diacetyl- phloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62:552–563
    [Google Scholar]
  45. Kreader C. A. 1995; Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl Environ Microbiol 61:1171–1179
    [Google Scholar]
  46. Lambert M. A., Hickman-Brenner F. W., Farmer J. J.III Moss C. W. 1983; Differentiation of Vibrionaceae species by their cellular fatty acid composition. Ini J Syst Bacieriol 33:777–792
    [Google Scholar]
  47. Leite R. P.Jr Minsavage G. V., Bonas U., Stall R. E. 1994; Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 60:1068–1077
    [Google Scholar]
  48. Li K. -N., Rouse D. I., German T. L. 1994; PCR primers that allow intergeneric differentiation of ascomycetes and their application to Verticillium spp. Appl Environ Microbiol 60:4324–4331
    [Google Scholar]
  49. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  50. Lysenko O. 1983; Bacillus thuringiensis-. evolution of taxonomic concept. J lnvertebr Pathol 42:295–298
    [Google Scholar]
  51. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218
    [Google Scholar]
  52. Mazurier S., van de Giessen A., Heuvelman K., Wernars K. 1992; RAPD analysis of Campylobacter isolates: DNA finger-printing without the need to purify DNA. Lett Appl Microbiol 14:260–262
    [Google Scholar]
  53. Mikesell P., Ivins B. E., Ristroph J. D., Dreier T. M. 1983; Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun 39:371–376
    [Google Scholar]
  54. Milner J. L., Raffel S. J., Lethbridge B. J., Handelsman J. 1995; Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol 43:685–691
    [Google Scholar]
  55. Milner J., Silo-Suh L., Goodman R. M., Handelsman J. 1996a; Antibiosis and beyond: genetic diversity, microbial communities, and biological control. In Ecological Interactions and Biological Control Edited by Andow D., Nyvall. R.. Boulder, CO: Westview Press; (in press)
    [Google Scholar]
  56. Milner J. L., Stohl E. A., Handelsman J. 1996b; Zwittermicin A-resistance gene from Bacillus cereus. J Bacteriol 174:4266–4272
    [Google Scholar]
  57. O’Connell K. P., Goodman R. M., Handelsman J. 1996; Engineering the rhizosphere: expressing a bias. Trends Biotechnol 14:83–88
    [Google Scholar]
  58. Osburn R. M., Milner J. L., Oplinger E. S., Smith R. S., Handelsman J. 1995; Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis 79:551–556
    [Google Scholar]
  59. Pierson E. A., Weller D. M. 1994; Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947
    [Google Scholar]
  60. Priest F. G. 1993; Systematics and ecology of Bacillus. In Bacillus subtilis and Other Gram-positive Bacteria pp. 9–10 Edited by Sonenshein. A. L., Hoch. J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  61. Rainey P. B., Bailey M. J., Thompson I. P. 1994; Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field-grown sugar beet. Microbiology 140:2315–2331
    [Google Scholar]
  62. Reif T. G., Johns M., Pillai S. D., Carl M. 1994; Identification of capsule-forming Bacillus anthracis spores with the PCR and a novel dual-probe hybridization format. Appl Environ Microbiol 60:1622–1625
    [Google Scholar]
  63. SAS Institute 1988 SAS/STAT User’s Guide, 4th edn.. Cary, NC: SAS Institute;
    [Google Scholar]
  64. Schiemann D. A. 1978; Occurrence of Bacillus cereus and the bacteriological quality of Chinese ‘take-out’ foods. J Food Prot 41:450–454
    [Google Scholar]
  65. Schraft H., Griffiths M. W. 1995; Specific oligonucleotide primers for detection of lecithinase-positive Bacillus spp. by PCR. Appl Environ Microbiol 61:98–102
    [Google Scholar]
  66. Silo-Suh L. A., Lethbridge B. J., Raffel S. J., He H., Clardy J., Handelsman J. 1994; Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030
    [Google Scholar]
  67. Smith K. P., Havey M. J., Handelsman J. 1993; Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142
    [Google Scholar]
  68. Snedecor G. W., Cochran W. G. 1980; Test of homogeneity of variance. In Statistical Methods pp. 252–254 Ames, Iowa: Iowa State Press;
    [Google Scholar]
  69. Stabb E. V., Jacobson L. M., Handelsman J. 1994; Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412
    [Google Scholar]
  70. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic impli-cations and development of an Actinomyces israelii-specific oligonucleotide probe. J Gen Microbiol 136:37–43
    [Google Scholar]
  71. Stackebrandt E., Witt D., Kemmerling C., Kroppenstedt R., Liesack W. 1991; Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl Environ Microbiol 57:1468–1477
    [Google Scholar]
  72. Szewzyk U., Manz W., Amann R., Schleifer K. -H., Stenstrbm T. -A. 1994; Growth and in situ detection of a pathogenic Escherichia coli in biofilms of a heterotrophic water-bacterium by use of 16S- and 23S-rRNA-directed fluorescent oligonucleotide probes. FEMS Microbiol Ecol 13:169–175
    [Google Scholar]
  73. Tailor R., Tippett J., Gibb G., Pells S., Pike D., Jordan L., Ely S. 1992; Identification and characterization of a novel Bacillus thuringiensis ^-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol Microbiol 6:1211–1217
    [Google Scholar]
  74. Thorne C. B. 1993; Bacillus anthracis. In Bacillus subtilis and Other Gram-positive Bacteria pp. 113–124 Edited by Sonenshein A. L., Hoch. J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  75. Tschen J.S.-M., Lee Y. -Y. 1988; Control of Rhizoctonia solani on chrysanthemums by antibiotic microorganisms. Trans Mycol Soc Japan 29:391–400
    [Google Scholar]
  76. Tschen J.S.-M., Tseng C. -N. 1989; Bacereutin, an antifungal antibiotic isolated from metabolites of Bacillus cereus CHU 130. Proc Natl Sci Counc Repub China Part B Life Sci 13258–261
    [Google Scholar]
  77. Turnbull P. G. B. 1981; Bacillus cereus toxins. Pharmacol Ther 13:453–505
    [Google Scholar]
  78. Turnbull P. GB., Kramer J. M., Jorgensen K., Gilbert R. J. 1979; Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Am J Clin Nutr 32:219–228
    [Google Scholar]
  79. Väisänen O. M., Mwaisumo N. J., Salkinoja-Salonen M. S. 1991; Differentiation of dairy strains of the Bacillus cereus group by phage typing, minimum growth temperature, and fatty acid analysis. J Appl Bacteriol 70:315–324
    [Google Scholar]
  80. Wakayama S., Ishikawa F., Oishi K. 1984; Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus. Antimicrob Agents Chemother 26:939–940
    [Google Scholar]
  81. Wang G., Whittam T. S., Berg G. M., Berg D. E. 1993; RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme electrophoresis for distinguishing related bacterial strains. Nucleic Acids Res 21:5930–5933
    [Google Scholar]
  82. Welsh J., McClelland M. 1990; Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218
    [Google Scholar]
  83. Zahner V., Momen H., Salles C. A., Rabinovitch L. 1989; A comparative study of enzyme variation in Bacillus cereus and Bacillus thuringiensis. J Appl Bacteriol. 67:275–282
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-12-3425
Loading
/content/journal/micro/10.1099/13500872-142-12-3425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error