1887

Abstract

Protamine is a polycationic peptide found in the nuclei of sperm of different animal species. While it has long been known to have antimicrobial properties, its mode of action has remained elusive. We have investigated the mechanism of action of protamine and established that this peptide exerts its antibacterial effect without causing cell lysis or permeabilization of the cytoplasmic membrane. Respiring cells were more susceptible than nonrespiring cells, and loss of viability could be prevented by incubation at low pH or the addition of respiratory poisons. This indicates that protamine activity is influenced by the electrical membrane potential (ΔΨ): increased killing occurs at higher ΔΨ values. Protamine caused inhibition of proline uptake, rapid efflux of proline from preloaded cells, and a reduction in the cellular ATP content. Furthermore, protamine-treated cells first lost the ability to accumulate leucine and then could not carry out protein synthesis. Cumulatively, our data indicate that protamine disrupts energy transduction and nutrient uptake functions, and suggest that the cytoplasmic membrane is the target of protamine action.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-12-3389
1996-12-01
2022-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/12/mic-142-12-3389.html?itemId=/content/journal/micro/10.1099/13500872-142-12-3389&mimeType=html&fmt=ahah

References

  1. Agerberth B., Lee J. -Y., Bergman T., Carlquist M., Boman H. G., Mutt V., Jörnvall H. 1991; Amino acid sequence of PR-39. Eur J Biochem 202:849–854
    [Google Scholar]
  2. Berger E. A. 1973; Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Natl Acad Sci USA 701514–1518
    [Google Scholar]
  3. Boman H. G. 1995; Peptide antibiotics and their role in innate immunity. Anna Rev Immunol 13:61–92
    [Google Scholar]
  4. Boman H. G., Agerberth B., Boman A. 1993; Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984
    [Google Scholar]
  5. Booth I. R. 1985; Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378
    [Google Scholar]
  6. Busse H. -J., Wörstmann C., Bakker E. P. 1992; The bactericidal action of streptomycin: membrane permeabilization caused by the insertion of mistranslated proteins into the cytoplasmic membrane of Escherichia coli and subsequent caging of the antibiotic inside the cells due to degradation of these proteins. J Gen Microbiol 138:551–561
    [Google Scholar]
  7. Carroll S. F., Martinez R. J. 1981; Antibacterial peptide from normal rabbit serum. 3. Inhibition of microbial electron transport. Biochemistry 20:5988–5994
    [Google Scholar]
  8. Christensen B., Fink J., Merrifield R. B., Mauzerall D. 1988; Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 855072–5076
    [Google Scholar]
  9. Duclohier H., Mode G., Spach G. 1989; Antimicrobial peptide magainin 1 from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J 56:1017–1021
    [Google Scholar]
  10. Fields P. I., Groisman E. A., Heffron F. 1989; A Salmonellalocus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062
    [Google Scholar]
  11. García-Véscovi E., Soncini F., Groisman E. A. 1994; The role of the PhoP/PhoQ regulon in Salmonella virulence. Res Microbiol 145:473–480
    [Google Scholar]
  12. Groisman E. A. 1994; How bacteria resist killing by host-defense peptides. Trends Microbiol 2:444–449
    [Google Scholar]
  13. Groisman E. A., Heffron F., Solomon F. 1992a; Molecular genetic analysis of the Escbericbia coli pboP locus. J Bacteriol 174:486–491
    [Google Scholar]
  14. Groisman E. A., Parra-Lopez C., Salcedo M., Lipps C. J., Heffron F. 1992b; Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA 8911939–11943
    [Google Scholar]
  15. Hiemstra P. S., Eisenhauer P. B., Harwig S. S. L., van den Baselaar M. T., van Furth R., Lehrer R. I. 1993; Antimicrobial proteins of murine macrophage. Infect Immun 61:3038–3046
    [Google Scholar]
  16. Hirsch J. G. 1958; Bactericidal action of histone. J Exp Med 107:925–944
    [Google Scholar]
  17. Johansen C., Gill T., Gram L. 1995; Antibacterial effect of protamine assayed by impedimetry. J Appl Bacteriol 78:297–303
    [Google Scholar]
  18. Kagan B. L., Selsted M. E., Ganz T., Lehrer R. I. 1990; Antimicrobial defensin peptides form voltage-dependent ionpermeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 87210–214
    [Google Scholar]
  19. Kaiser E. T., Kézdy F. J. 1987; Peptides with affinity for membranes. Annu Rev Biophys Biophys Chem 16:561–581
    [Google Scholar]
  20. Kashket E. R. 1985; The proton motive force in bacteria: a critical assessment of methods. Annu Rev Microbiol 39:219–242
    [Google Scholar]
  21. Klein W. L., Boyer P. D. 1972; Energization of active transport by Escherichia coli. J Biol Chem 247:7257–7265
    [Google Scholar]
  22. Lehrer R. I., Barton A., Daher K. A., Harwig S. S. L., Ganz T., Selsted M. E. 1989; Interaction of human defensins with Escherichia coli. J Clin Invest 84:553–561
    [Google Scholar]
  23. Louie A. J., Dixon G. H. 1974; Enzymatic modifications of the protamines. II. Separation and characterization of phosphorylated species of protamines from trout testis. Can J Biochem 52:536–546
    [Google Scholar]
  24. Maloney P. C. 1987; Coupling to an energized membrane: role of ion-motive gradients in the transduction of metabolic energy. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 222–243 Edited by Neidhardt F. C., Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Miller B. F., Abrams R., Dorfman A., Klein M. 1942; Antibacterial properties of protamine and histone. Science 96:428–430
    [Google Scholar]
  26. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Mochan B. S., Elliott W. B., Nicholls P. 1973; Patterns of cytochrome oxidase inhibition by polycations. Bioenergetics 4:329–345
    [Google Scholar]
  28. Parra-Lopez C., Baer M. T., Groisman E. A. 1993; Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J 12:4053–4062
    [Google Scholar]
  29. Parra-Lopez C, Lin R., Aspedon A., Groisman E. A. 1994; A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J 13:3964–3972
    [Google Scholar]
  30. Person P., Fine A. S. 1961; Reversible inhibition of cytochrome system components by macromolecular polyions. Arch Biochem Biophys 94:392–404
    [Google Scholar]
  31. Person P., Zipper H., Fine A. S., Mora P. T. 1964; Macroion interactions involving cytochrome system components. J Biol Chem 239:4159–4162
    [Google Scholar]
  32. Shioi J., Taylor B. L. 1984; Oxygen taxis and proton motive force in Salmonella typhimurium. J Biol Chem 259:10983–10988
    [Google Scholar]
  33. Skerlavaj B., Romeo D., Gennaro R. 1990; Rapid membrane permeabilization and inhibition of vital functions of Gram-negative bacteria by bactenecins. Infect Immun 58:3724–3730
    [Google Scholar]
  34. Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J. 1996; Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236
    [Google Scholar]
  35. Soboh F., Khoury A. E., Zamboni A. C., Davidson D., Mittelman M. W. 1995; Effects of ciprofloxacin and protamine sulfate combinations against catheter-associated Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 39:1281–1286
    [Google Scholar]
  36. Vaara M. 1981; Increased outer membrane resistance to ethyl-enediaminetetraacetate and cations in novel lipid A mutants. J Bacteriol 148:426–434
    [Google Scholar]
  37. Vaara M. 1992; Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411
    [Google Scholar]
  38. Westerhoff H. V., Juretic D., Hendler R. W., Zasloff M. 1989; Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 86:6597–6601
    [Google Scholar]
  39. Zasloff M. 1992; Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol 4:3–7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-12-3389
Loading
/content/journal/micro/10.1099/13500872-142-12-3389
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error