1887

Abstract

Growth of the thermoacidophilic archaeon was tested on a range of carbon and nitrogen sources. Optimal defined and complex growth media were developed and growth conditions in both shake flask and fermenter cultures were optimized. Better growth was observed on maltose in particular and disaccharides in general than on monosaccharides. Moreover, maltose utilization was not repressed in the presence of glucose which suggests that glucose is not the preferred substrate of Uptake studies putatively identified two saturable, constitutive maltose transport systems, a high-affinity, possible membrane-binding system with a of 20 μM and a of 218 nmol min (mg protein), and a low-affinity, proton-dependent system with a of 158 μM and a of 680 nmol min(mg protein). Both systems showed differential responses to treatment with 2,4-dinitrophenol and arsenate, and differed from other maltose transport mechanisms described in being constitutive under all conditions tested and not repressed by glucose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-12-3373
1996-12-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/12/mic-142-12-3373.html?itemId=/content/journal/micro/10.1099/13500872-142-12-3373&mimeType=html&fmt=ahah

References

  1. Ames G.F.-L. 1992; Bacterial periplasmic permeases as model systems for the superfamily of traffic ATPases, including the multidrug resistance protein and the cystic fibrosis transmembrane conductance regulator. Int Rev Cytol1–35
    [Google Scholar]
  2. Anemuller S., Lubben M., Schafer G. 1985; The respiratory system of Sulfolobus acidocaldarius, a thermoacidophilic archae- bacterium. FEBS Lett 193:83–87
    [Google Scholar]
  3. Bakker E. P. 1990; The role of alkali-cation transport in energy coupling of neutrophilic and acidophilic bacteria: an assessment of methods and concepts. FEMS Microbiol Rev 75: 319–334
    [Google Scholar]
  4. Benito B., Lagunas R. 1992; The low affinity component of Saccharomyces cerevisiae maltose transport is an artifact. J Bacteriol 174:3065–3069
    [Google Scholar]
  5. Birnberg P. R., Brenner M. L. 1984; A one-step enzymatic assay for sucrose with sucrose phosphorylase. Anal Biocbem 142:556–561
    [Google Scholar]
  6. Booth I. R. 1985; Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378
    [Google Scholar]
  7. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus: a new genus of sulfur-oxidising bacteria living at low pH and high temperature. Arch Microbiol 84:54–68
    [Google Scholar]
  8. Brzostek K., Heleszko H., Hrebenda J. 1993; Maltoporins and maltose-binding proteins of Yersinia enterocolitica. J Gen Microbiol 139:195–201
    [Google Scholar]
  9. Busturia A., Lagunas R. 1985; Identification of two forms of the maltose transport systems in Saccharomyces cerevisiae and their regulation by catabolite inactivation. Biochim Biophys Acta 820:324–326
    [Google Scholar]
  10. Cobley J. G., Cox J. C. 1983; Energy conservation in acidophilic bacteria. Microbiol Rev 47:579–595
    [Google Scholar]
  11. Cusdin F. S., Robinson M. J., Holman G. D., Hough D. W., Danson M. J. 1996; Characterisation of glucose transport in the hyperthermophilic Archaeon Sulfolobus solfataricus. FEBS Lett 387:193–195
    [Google Scholar]
  12. Daruwalla K. R., Paxton A. T., Henderson P. J. F. 1981; Energisation of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J 200:611–627
    [Google Scholar]
  13. Erni B. 1992; Group translocation of glucose and other carbo¬hydrates by the bacterial phosphotransferase system. Int Rev Cytol 137 A:127–148
    [Google Scholar]
  14. Glaser H. -U., Sekler I., Pick U. 1990; Indications for a K+/H+ co-transport system in plasma membranes from two acidophilic microorganisms. Biochim Biophys Acta 019:293–299
    [Google Scholar]
  15. Goulbourne E., Jr Matin, Zychlinsky E., Matin M. 1986; Mechanism of ApH maintenance in active and inactive cells of an obligately acidophilic bacterium. J Bacteriol 166:59–65
    [Google Scholar]
  16. Grogan D. W. 1989; Phenotypic characterisation of the genus Sulfolobus-.comparison of five wild-type strains. J Bacteriol 171:6710–6719
    [Google Scholar]
  17. Grogan D. W. 1991; Evidence that yS-galactosidase of Sulfolobus solfataricus is only one of several activities of a thermostable β- glycosidase. Appl Environ Microbiol 57:1644–1649
    [Google Scholar]
  18. Grogan D. W., Palm P., Zillig W. 1990; Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599
    [Google Scholar]
  19. Hengge R., Boos W. 1983; Maltose and lactose transport in Escherichia coli: examples of two different types of concentrative transport systems. Biochim Biophys Acta 737:443–478
    [Google Scholar]
  20. HOnerzuBentrup K., Schmid R., Sneider E. 1994; Maltose transport in Aeromonas hydrophila: purification, biochemical charac¬terization and partial protein sequence analysis of a periplasmic maltose-binding protein. Microbiology 140:945–951
    [Google Scholar]
  21. Joshi A. K., Ahmed S., Ames G.F.-L. 1989; Energy coupling in bacterial periplasmic transport systems: studies in intact Escherichia coli cells. J Biol Chem 264: 2126–2133
    [Google Scholar]
  22. Loureiro-Dias M. C., Peinado J. M. 1982; Effect of ethanol and other alkanols on the maltose transport systems of Saccharomyces cerevisiae. Biotechnol Lett 4:721–724
    [Google Scholar]
  23. Lubben M., Schafer G. 1989; Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related >N,N'- dicyclohexylcarbodiimide-binding proteolipid. J Bacteriol 171:6106–6116
    [Google Scholar]
  24. Matin A. (1990a); Bioenergetics parameters and transport in obligate acidophiles. Biochim Biophys Acta 1018:267–270
    [Google Scholar]
  25. Matin A. (1990b); Keeping a neutral cytoplasm; the bioenergetics of obligate acidophiles. FEMS Microbiol Rev 75:307–318
    [Google Scholar]
  26. Moll R., Schafer G. 1988; Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett 232:359–363
    [Google Scholar]
  27. Nikaido H. 1994; Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55–58
    [Google Scholar]
  28. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  29. Rolfsmeier M., Blum P. 1995; Purification and characterisation of a maltase from the extremely thermophilic Crenarcheote Sulfolobus solfataricus. J Bacteriol 177:482–485
    [Google Scholar]
  30. Romano A. H. 1986; Microbial sugar transport systems and their importance in biotechnology. Trends Biotechnol 4:207–214
    [Google Scholar]
  31. Sahm K., Matuschek M., Muller H., Mitchell W. J., Bahl H. 1996; Molecular analysis of the amy gene locus of Thermo- anaerobacterium thermosulfurigenes EMI encoding starch-degrading enzymes and a binding protein-dependent maltose transport system. J Bacteriol 178:1039–1046
    [Google Scholar]
  32. Schafer G., Anemuller S., Moll R., Meyer W., Lubben M. 1990; Electron transport in the archaebacterium Sulfolobus acidocaldarius. . FEMS Microbiol Rev 75:335–348
    [Google Scholar]
  33. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124
    [Google Scholar]
  34. Tangney M., Smith P., Priest F. G., Mitchell W. J., Segerer A. 1992a; Maltose transport in Bacillus licheniformis NCIB 6346. J Gen Microbiol 138:1821–1827
    [Google Scholar]
  35. Tangney M., Buchanan C. J., Priest F. G., Mitchell W. J. 1992b; Maltose uptake and its regulation in Bacillus subtilis. FEMS Microbiol Lett 97:191–196
    [Google Scholar]
  36. VanLeeuwen C. M., Weusthuis R. A., Postma E., Van Den Broek P. J. A. 1992; Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles. Biochem J 284:441–445
    [Google Scholar]
  37. Yeats S., McWilliam P., Zillig W. 1982; A plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J 1:1035–1038
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-12-3373
Loading
/content/journal/micro/10.1099/13500872-142-12-3373
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error