1887

Abstract

Chromosomal DNA fragments encoding the ability to utilize biphenyl as sole carbon source (Bph) were mobilized by means of plasmid RP4::Mu3A from strain JB1 (tentatively identified as sp.) to CH34 at a frequency of 10 per transferred plasmid. The mobilized DNA integrated into the recipient chromosome or was recovered as catabolic prime plasmids. Three Bph prime plasmids were transferred from to and back to without modification of the phenotype. The transferred Bph DNA segments allowed metabolism of biphenyl, 2-, 3- and 4-chlorobiphenyl, and diphenylmethane. Genes involved in biphenyl degradation were identified on the prime plasmids by DNA-DNA hybridization and by gene cloning. Bph prime plasmids were transferred to and and the catabolic genes were expressed in those hosts. Transfer of the plasmid to the 3-chlorobenzoate-degrading bacterium sp. B13 allowed the recipient to mineralize 3-chlorobiphenyl. Other catabolic prime plasmids were obtained from JB1 by selection on -hydroxybenzoate and tyrosine as carbon sources. 16S rRNA sequence data demonstrated that the transfer of was achieved between bacteria belonging to two different branches of the -Proteobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3283
1996-11-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3283.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3283&mimeType=html&fmt=ahah

References

  1. Adams R.H., Huang C.M., Higson F.K., Brenner V., Focht D.D. 1992; Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl Environ Microbiol 58:647–654
    [Google Scholar]
  2. Ahmad D., Massé R., Sylvestre M. 1990; Cloning and expression of genes involved in 4-chlorobiphenyl transformation by Pseudomonas testosteroni. homology to polychlorobiphenyl-de- grading genes in other bacteria. Gene 86:53–61
    [Google Scholar]
  3. Assinder S.J., Williams P.A. 1990; The TOL plasmids; determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:2–69
    [Google Scholar]
  4. Asturias J.A., Timmis K.N. 1993; Three different 2,3- dihydroxybiphenyl-1,2-dioxygenase genes in the Gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol 175:4631–1640
    [Google Scholar]
  5. Barkay T., Liebert C., Gillman M. 1993; Conjugal gene transfer to aquatic bacteria detected by the generation of a new phenotype. Appl Environ Microbiol 59:807–814
    [Google Scholar]
  6. Bergmann J.G., Sanik J. 1957; Determination of trace amounts of chlorine in naphtha. Anal Chem 29:241–243
    [Google Scholar]
  7. Bron S., Venema G. 1972; Ultraviolet inactivation and excision- repair in Bacillus subtilis. Construction of a transformable eight-fold auxotrophic strain and two ultra-violet sensitive derivatives. Mutat Res 15:1–10
    [Google Scholar]
  8. Burlage R.S., Bemis L.A., Sayler G.S., Larimer F. 1990; Comparative genetic organization of incompatibility group P degradative plasmids. J Bacteriol 172:6818–6825
    [Google Scholar]
  9. Carrington B., Lowe A., Shaw L.E., Williams P.A. 1994; The lower pathway operon for benzoate catabolism in biphenyl-utilizing Pseudomonas sp. strain IC and the nucleotide sequence of the bphE gene for catechol 2,3-dioxygenase. Microbiology 140:499–508
    [Google Scholar]
  10. De Rijk P., De Wachter R. 1993; DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Applic Biosci 9:735–740
    [Google Scholar]
  11. De Wilde K., Springael D., Mergeay M. 1992; Cloning of the bphC gene of the PCB catabolic transposon Tn4371 from Alcaligenes eutrophus A5. Arch Int Physiol Biochim 101:B33
    [Google Scholar]
  12. Don R.H., Pemberton J.M. 1981; Properties of six pesticide degradation plasmids isolated from Alcaligenes eutrophus and Alcaligenes paradoxus.. Jacteriol 145:681–686
    [Google Scholar]
  13. Dorn E., Hellwig M., Reineke W., Knackmuss H.J. 1974; Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70
    [Google Scholar]
  14. Eaton R.W., Timmis K.N. 1986; Spontaneous deletion of a 20 kilobase DNA segment carrying genes specifying isopropylbenzene metabolism in Pseudomonas putida RE204. J Bacteriol 168:428–430
    [Google Scholar]
  15. Erickson D.E., Mondello F.J. 1993; Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 59:3858–3862
    [Google Scholar]
  16. Fulthorpe R.R., Wyndham R.C. 1989; Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system. Appl Environ Microbiol 55:1584–1590
    [Google Scholar]
  17. Fulthorpe R.R., Wyndham R.C. 1992; Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophen- oxyacetic acid in a freshwater ecosystem. Appl Environ Microbiol 58:314–325
    [Google Scholar]
  18. Furukawa K., Miyazaki T. 1986; Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes.. J Bacterial 166:392–398
    [Google Scholar]
  19. Furukawa K., Hayase N., Taira K., Tomizuka N. 1989; Molecular relationship of chromosomal genes encoding biphenyl/ polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J Bacterial 171:5467–5472
    [Google Scholar]
  20. Haas D., Holloway B.C. 1976; R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa.. Mol Gen Genet 144:243–251
    [Google Scholar]
  21. Haas D., Reimann C. 1989; Use of IncP plasmids in chromosomal genetics of Gram-negative bacteria. In Promiscuous Plasmids of Gram-negative Bacteria pp. 185–206 Thomas C. M. Edited by London: Academic Press.;
    [Google Scholar]
  22. Haugland R.A., Schlamm D.J., Lyons R.P., Sferra P.R., Chakrabarty A.M. 1990; Degradation of chlorinated phenoxy- acetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-tri- chlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl Environ Microbiol 5:1357–1362
    [Google Scholar]
  23. Havel J., Reineke W. 1991; Total degradation of various chlorobiphenyls by cocultures and in vivo constructed pseudomonads. FEMS Microbiol Lett 78:163–170
    [Google Scholar]
  24. Hayase N., Taira K. 1990; Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J Bacteriol 172:1160–1164
    [Google Scholar]
  25. Herrmann H., Janke D., Krejsa S., Roy M. 1988; In vivo generation of R68.45-pPGHl hybrid plasmid conferring a Phl+(meta pathway) phenotype. Mol Gen Genet 214:173–176
    [Google Scholar]
  26. Hickey W.J., Focht D.D. 1990; Degradation of mono, di- and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol 56:3842–3850
    [Google Scholar]
  27. Hickey W.J., Searles D.B., Focht D.D. 1992; Mineralization of 2-chloro- and 2,5-dichlorobiphenyl by Pseudomonas sp. strain UCR2. FEMS Microbiol Lett 98:175–180
    [Google Scholar]
  28. Höfte M., Mergeay M., Verstraete W. 1990; Marking the Rhizopseudomonas strain 7NSK2 with a Mud element for ecological studies. Appl Environ Microbiol 56:1046–1052
    [Google Scholar]
  29. Hopper D.J., Taylor D.G. 1975; Pathways for the degradation of w-cresol and m-cresol by Pseudomonas putida.. J Bacteriol 122:1–6
    [Google Scholar]
  30. Ish-Horowicz D.I. 1981; Rapid and efficient cosmid cloning. Nucleic Acids Res 9:2989–2998
    [Google Scholar]
  31. Jukes T.H., Cantor C.R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132 Munro H. N. Edited by New York: Academic Press.;
    [Google Scholar]
  32. Kado C.I., Liu S.T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373
    [Google Scholar]
  33. Keen N.T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  34. Khan A., Waiia S. 1989; Cloning of bacterial genes specifying degradation of 4-chlorobiphenyl from Pseudomonas putida OU83. Appl Environ Microbiol 55:798–805
    [Google Scholar]
  35. Kimbara K., Hashimoto T., Fukuda M., Koana T., Takagi M., Oishi M., Yano K. 1989; Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bac¬terium Pseudomonas sp. strain KKS102. J Bacteriol 171:2740–2747
    [Google Scholar]
  36. Kolenc R.J., Innis W.E., Glick B.R., Robinson C.W., Mayfield C.I. 1988; Transfer and expression of mesophilic plasmid- mediated degradative capacity in a psychrotrophic bacterium. Appl Environ Microbiol 54:638–641
    [Google Scholar]
  37. Layton A.C., Sanseverino J., Wallace W., Corcoran C., Sayler G.S. 1992; Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Appl Environ Microbiol 58:399–402
    [Google Scholar]
  38. Lejeune P., Mergeay M., van Gijsegem F., Faelen M., Gerits G., Toussaint A. 1983; Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4:: Mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fluorescens 6.2.. J Bacteriol 155:1015–1026
    [Google Scholar]
  39. Lloyd-Jones G., de Jong C., Ogden R.C., Duetz W.A., Williams P.A. 1994; Recombination of the bph (biphenyl) catabolic genes from plasmid pWWIOO and their deletion during growth on benzoate. Appl Environ Microbiol 60:691–696
    [Google Scholar]
  40. McClure N.C., Weightman A.J., Fry J.C. 1989; Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated sludge unit. Appl Environ Microbiol 55:2627–2634
    [Google Scholar]
  41. McPherson P., Gealt M. A. 1986; Isolation of indigenous waste water bacterial strains capable of mobilizing plasmid pBR325. Appl Environ Microbiol 51:904–909
    [Google Scholar]
  42. Mäe amp;, Habicht Y.K., Nurk A.E., Heinaru A.L. 1991; Transposons Tn4652 and Ta3614 of the TOL plasmid pWWO are involved in conjugal mobilization of chromosomally located catabolic cam-opetons.. Genetika 27:773–782
    [Google Scholar]
  43. Maeda M., Chung S.Y., Song E., Kudo T. 1995; Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the Gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erytbropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 61:549–555
    [Google Scholar]
  44. van der Meer J.R., Zehnder A.J.B., de Vos W.M. 1991; Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes in Pseudomonas sp. strain P51. J Bacteriol 173:7077–7083
    [Google Scholar]
  45. Mergeay M., Nies D., Schlegel H.G., Gerits J., Charles P., van Gijsegem F. 1985; Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334
    [Google Scholar]
  46. Meulien P., Downing R.G., Broda P. 1981; Excision of the 40 kb segment of the TOL plasmid from Pseudomonas putida mt-2 involves direct repeats. Mol Gen Genet 184:97–101
    [Google Scholar]
  47. Mokross H., Schmidt E., Reineke W. 1990; Degradation of 3- chlorobiphenyl by in vivo constructed hybrid Pseudomonads. FEMS Microbiol Lett 71:179–186
    [Google Scholar]
  48. Mondello F.J. 1989; Cloning and expression in Escherichia coli of Pseudomonas sp. strain LB400 genes encoding polychlorinated biphenyl degradation. J Bacteriol 171:1725–1732
    [Google Scholar]
  49. Nakatsu C., Ng J., Singh R., Straus N., Wyndham R.C. 1991; Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci USA 88:8312–8316
    [Google Scholar]
  50. Ogawa N., Miyashita K. 1995; Recombination of a 3- chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeats. Appl Environ Microbiol 61:3788–3795
    [Google Scholar]
  51. Parsons J. R., Storms M. C. M. . 1989; Biodegradation of chlorinated dibenzo-p-dioxins in batch and continous cultures of strain JB1. Chemosphere 19:1297–1308
    [Google Scholar]
  52. Parsons J.R., Sijm D.T.H.M., van Laar A., Hutzinger O. 1988; Biodegradation of chlorinated biphenyls and benzoic acids by a Pseudomonas strain. Appl Microbiol Biotechnol 29:81–84
    [Google Scholar]
  53. Parsons J.R., Ratsak C., Siekerman C. 1990; Biodegradation of chlorinated dibenzofurans by an Alcaligenes strain. In Organohalogen Compounds Proceedings of Dioxin ’90 - EPRI Seminar, Bayreuth, September 10–14, 1990 10 pp. 377–380 Hutzinger O., Fiedler H. Edited by Bayreuth:: Ecoinforma Press.;
    [Google Scholar]
  54. Peloquin L., Greer C.W. 1993; Cloning and expression of the polychlorinated biphenyl-degradation gene cluster from Arthro- bacter M5 and comparison to analogous genes from Gram-negative bacteria. Gene 125:35–40
    [Google Scholar]
  55. Poh C.L., Bayly R.C. 1980; Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes.. J Bacteriol 143:59–69
    [Google Scholar]
  56. Ramos-Gonzalez M.I., Ramos-Diaz M.A., Ramos J.L. 1994; Chromosomal gene capture mediated by the Pseudomonas putida TOL catabolic plasmid. J Bacteriol 176:4635–4641
    [Google Scholar]
  57. Sadouk A., Mergeay M. 1993; Chromosome mapping in Alcaligenes eutrophus CH34. Mol Gen Genet 240:181–187
    [Google Scholar]
  58. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  59. Selifonov S.A., Starovoitov I.I. 1991; Comparative study of the enzymes of meta-cleavage of the aromatic ring in strains of the bacterium Pseudomonas with plasmid and chromosomal genetic control of biphenyl and m-toluate catabolism. Biochemistry 55:1616–1623
    [Google Scholar]
  60. Sondossi M., Sylvestre M., Ahmad D. 1992; Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway. Appl Environ Microbiol 58:485–495
    [Google Scholar]
  61. Springael D., Diels L., Hooyberghs L., Kreps S., Mergeay M. 1993a; Construction and characterization of heavy metal resistant haloaromatic degrading Alcaligenes eutrophus strains. Appl Environ Microbiol 59:334–339
    [Google Scholar]
  62. Springael D., Kreps S., Mergeay M. 1993b; Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chloro- biphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol 175:1674–1681
    [Google Scholar]
  63. Springael D., Diels L., Mergeay M. 1994; Transfer and expression of PCB-degradative genes into heavy metal resistant Alcaligenes eutrophus strains. Biodegradation 5:343–357
    [Google Scholar]
  64. Staskavicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence gene from race 0 and race 1 of Pseudomonas syringae pv. glycinea.. J Bacteriol 169:5789–5794
    [Google Scholar]
  65. Steinbüchel A., Kuhn M., Niedrig M., Schlegel H.G. 1983; Fermentation enzymes in strictly aerobic bacteria: comparativestudies on strains of the genus Alcaligenes and on Nocardia opaca and Xanthobacter autotrophicus.. J Gen Microbiol 129:2825–2835
    [Google Scholar]
  66. Taira K., Hirose J., Hayashida S., Furukawa K. 1992; Analysis of bpb operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcafigenes KF707. J Biol Chem 267:4844–4853
    [Google Scholar]
  67. Top E., de Smet I., Verstraete W., Dijkmans R., Mergeay M. 1994; Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60:831–839
    [Google Scholar]
  68. Van Gijsegem F., Toussaint A. 1982; Chromosome transfer and R-prime formation by an RP4:: mini Mu derivative in Escherchia coli, Salmonella typhimurium, Klebsiella pneumoniae and Proteus mirabilis.. Plasmid 7:30–44
    [Google Scholar]
  69. Van Gijsegem F., Toussaint A., Casadaban M. 1987; Mu as agenetic tool. In Phage Mu pp. 215–250 Symonds N., Toussaint A., Van de Putte P., Howe M.M. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  70. Van de Peer Y., De Wachter R. 1994; TREECON for Windows: a software package for the construction and drawing of evol¬utionary trees for the Microsoft Windows environment. Oxford University Press; 10569–570
    [Google Scholar]
  71. Van de Peer Y., Van den Broeck I., De Rijk P., De Wachter R. 1994; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494
    [Google Scholar]
  72. Van de Peer Y., Nicolai S., De Rijk P., De Wachter R. 1996; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 24:86–91
    [Google Scholar]
  73. Wilmotte A., Van der Auwera G., De Wachter R. 1993; Structure of the 16S ribosomal RNA of the thermophilic cyano-bacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF ’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100
    [Google Scholar]
  74. Wyndham C, Cashore A.E., Nakatsu C.H., Peel M.C. 1994; Catabolic transposons. Biodegradation 5:323–342
    [Google Scholar]
  75. Zhang C., Holloway B.W. 1992; Physical and genetic mappingof the cat A region of Pseudomonas aeruginosa.. J Gen Microbiol 138:1097–1107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3283
Loading
/content/journal/micro/10.1099/13500872-142-11-3283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error