1887

Abstract

The enzymes responsible for the degradation of isopropylbenzene (IPB) and co-oxidation of trichloroethene (TCE) by BD2 are encoded by the linear plasmid pBD2. Fragments containing IPB catabolic genes were cloned from pBD2 and the nucleotide sequence was determined. By means of database searches and expression of the cloned genes in recombinant strains, we identified five clustered genes, which encode the three components of the IPB 2,3-dioxygenase system, reductase (), ferredoxin () and the two subunits of the terminal dioxygenase (), as well as the 3-isopropylcatechol (IPC) 2,3-dioxygenase (). The protein sequences deduced from the gene cluster exhibited significant homology with the corresponding proteins of analogous degradative pathways in Gram-negative and Gram-positive bacteria, but the gene order differed from most of them. IPB 2,3-dioxygenase and 3-IPC 2,3-dioxygenase could both be expressed in but the IPB 2,3-dioxygenase activities were too low to be detected by polarographic and TCE degradative means. However, inhibitor studies with the BD2 wild-type are in accordance with the involvement of the IPB 2,3-dioxygenase in TCE oxidation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3241
1996-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3241.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3241&mimeType=html&fmt=ahah

References

  1. Anderson M.L.M., Young B.D. 1985; Quantitative filter hybridization. In Nucleic Acid Hybridization pp. 73–110 Hames B. D., Higgins S. J. Edited by Oxford: IRL Press;
    [Google Scholar]
  2. Arciero D., Vannelli T., Logan M., Hooper A.B. 1989; Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commm 159:640–643
    [Google Scholar]
  3. Asturias J.A., Eltis L.D., Prucha M., Timmis K.N. 1994; Analysis of the three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. J Biol Chem 269:7807–7815
    [Google Scholar]
  4. Asturias J.A., Diaz E., Timmis K.N. 1995; Evolutionary relationship of the biphenyl dioxygenase of the gram-positive bacterium Rhodococcus globerulus P6 to multicomponent dioxygenases of gram-negative bacteria. Gene 156:11–18
    [Google Scholar]
  5. Bachmann B.J. 1987; Linkage map of Escherichia coli K-12. , edition 7. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 2 pp. 807–876 Neidhardt F. C, Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Bartels I., Knackmuss H.-J., Reineke W. 1984; Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505
    [Google Scholar]
  7. Batie C.J., LaHie E., Ballou D.P. 1987; Purification and characterization of phthalateoxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J Biol Chem 262:1510–1518
    [Google Scholar]
  8. Bullock W.O., Fernandez J.M., Short J.M. 1987; XLl-blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Bio Techniques 5:376–378
    [Google Scholar]
  9. Clarke P.H., Laverack P.D. 1984; Growth characteristics of Pseudomonas strains carrying catabolic plasmids and their cured derivatives. FEMS Microbiol Lett 24:109–112
    [Google Scholar]
  10. Correll C.C., Batie C.J., Ballou D.P., Ludwig M.L. 1985; Crystallographic characterization of phthalate oxygenase reductase, an iron-sulphur flavoprotein from Pseudomonas cepacia. J Biol Chem 260:14633–14635
    [Google Scholar]
  11. Correll C.C., Batie C.J., Ballou D.P., Ludwig M.L. 1992; Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258:1604–1610
    [Google Scholar]
  12. Dabbs E.R., Gowan B., Andersen S.J. 1990; Nocardioform arsenic resistance plasmids and construction of Rhodococcus cloning vectors. Plasmid 23:242–247
    [Google Scholar]
  13. Dabrock B., Riedel J., Bertram J., Gottschalk G. 1992; Isopropylbenzene (cumene) - a new substrate for the isolation of trichloroethene-degrading bacteria. Arch Microbiol 158:9–13
    [Google Scholar]
  14. Dabrock J., KeBeler M., Averhoff B., Gottschalk G. 1994; Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 specifying for isopropylbenzene and trichloroethene (TCE) catabolism. Appl Environ Microbiol 60:853–860
    [Google Scholar]
  15. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. 1990; Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol 212:135–142
    [Google Scholar]
  16. Ensley B.D. 1991; Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol 45:283–299
    [Google Scholar]
  17. Ensley B.D., Ratzkin B.J., Osslund T.D., Simon M.J., Wackett L.P., Gibson D.T. 1983; Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169
    [Google Scholar]
  18. Erickson B.D., Mondello F.J. 1992; Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174:2903–2912
    [Google Scholar]
  19. Evers J., Freier-Schröder D., Knackmuss H.-J. 1990; Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch Microbiol 154:410–413
    [Google Scholar]
  20. Folsom B.R., Chapman P.J., Pritchard P.H. 1990; Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 56:1279–1285
    [Google Scholar]
  21. Furukawa K., Miyazaki T. 1986; Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol 166:392–398
    [Google Scholar]
  22. Jenkins O.R., Dalton H. 1985; The use of indole as a spectrophotometric assay substrate for toluene dioxygenase. FEMS Microbiol Lett 30:227–231
    [Google Scholar]
  23. Masai E., Yamada A., Healy J.M., Hatta T., Kimbara K., Fukuda K., Yano K. 1995; Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:2079–2085
    [Google Scholar]
  24. Mason J.R., Cammack R. 1992; The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305
    [Google Scholar]
  25. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Flarbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Miller R.E., Guengerich F.P. 1983; Metabolism of tri-chloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450. Cancer Res 43:1145–1152
    [Google Scholar]
  27. Nelson M.J.K., Montgomery S.O., Pritchard P.H. 1986; Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52:383–384
    [Google Scholar]
  28. Nelson M.J.K., Montgomery S.O., Pritchard P.H. 1988; Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol 54:604–606
    [Google Scholar]
  29. Oldenhuis R., Vink R.L.J.M., Janssen D., Witholt B. 1989; Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55:2819–2826
    [Google Scholar]
  30. Quan S., Dabbs E.R. 1993; Nocardioform arsenic resistance plasmid characterization and improved Rhodococcus cloning vectors. Plasmid 29:74–79
    [Google Scholar]
  31. Rieske J.S., MacLennan D.H., Coleman R. 1964; Isolation and properties of an iron-protein from the (reduced coenzyme Q)- cytochrome c reductase complex of the respiratory chain. Biochem Biophys Res Commun 15:338–344
    [Google Scholar]
  32. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  34. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  35. Schmidt K., Liaanen-Jensen S., Schlegel H.G. 1963; DieCarotinoide der Thiorhodaceae.. Arch Microbiol 46:117–126
    [Google Scholar]
  36. Taira K., Hirose J., Hayashida S., Furukawa K. 1992; Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 267:4844–4853
    [Google Scholar]
  37. Tan H.-M., Tang H.-Y., Joannou C.L., Abdel-Wahab N.H., Mason J.R. 1993; The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G + C content. Gene 130:33–39
    [Google Scholar]
  38. Van der Meer J.R., van Neerven A.R., de Vries E.J., De Vos W.M., Zehnder A.J. 1991; Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4- dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173:6–15
    [Google Scholar]
  39. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11
    [Google Scholar]
  40. Wackett L.P., Householder S.R. 1989; Toxicity of tri-chloroethylene to Pseudomonas putida FI is mediated by toluene dioxygenase. Appl Environ Microbiol 55:2723–2725
    [Google Scholar]
  41. Wackett L.P., Brusseau G.A., Householder S.R., Hanson R.S. 1989; Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol 55:2960–2964
    [Google Scholar]
  42. Whited G.M., Gibson D.T. 1991; T oluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J Bacteriol 173:3010–3016
    [Google Scholar]
  43. Wierenga R.K., Terpstra P., Hoi W.G.J. 1986; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107
    [Google Scholar]
  44. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  45. Zylstra G.J., Gibson D.T. 1989; Toluene degradation by Pseudomonasputida FI. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3241
Loading
/content/journal/micro/10.1099/13500872-142-11-3241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error