1887

Abstract

We have characterized the substrate specificity of dimethyl sulfoxide reductase (DmsABC) of by determining and values for 22 different substrates. The enzyme has a very broad substrate specificity. The values varied 470-fold, while values varied only 20-fold, implicating as the major determinant of / values. Sulfoxides and pyridine -oxide exhibited the lowest values, followed by aliphatic -oxides. The values for these compounds also followed the same pattern. Substitution at the 2 or 3 position of the pyridine -oxide ring had little effect on while substitution at the 4 position had a greater effect, and increased . Negatively charged substrates were poorly accepted. A few compounds that are not - or -oxides were also reduced by the enzyme. Most compounds reduced by DmsABC were not toxic to under anaerobic growth conditions, and was able to use many of these compounds anaerobically as terminal electron acceptors in the presence of glycerol. Anaerobic growth on sulfoxides is solely due to DmsABC expression. However, there appears to be another as yet unidentified terminal reductase capable of using pyridine -oxides as terminal electron acceptors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3231
1996-11-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3231.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3231&mimeType=html&fmt=ahah

References

  1. Barrett E.L., Kwan H.S. 1985; Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol 39:131–149
    [Google Scholar]
  2. Bilous P. T., Weiner J. H. 1985a; Dimethyl sulfoxide reductase activity by anaerobically grownEscherichia coli.. J Bacteriol 162:1151–1155
    [Google Scholar]
  3. Bilous P. T., Weiner J. H. 1985b; Proton translocation coupled to dimethyl sulfoxide reduction in anaerobically grownEscherichia coliHB101. J Bacteriol 163:369–375
    [Google Scholar]
  4. Bilous P.T., Cole S.T., Anderson W.F., Weiner J.H. 1988; Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli.. Mol Microbiol 2:785–795
    [Google Scholar]
  5. Boyer H.W., Roulland-Dussoix D. 1969; A complementary analysis of the restriction and modification of DNA in Escherichia coli.. J Mol Biol 41:459
    [Google Scholar]
  6. Cammack R., Weiner J.H. 1990; Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli.. Biochemistry 29:8410–8416
    [Google Scholar]
  7. Casadaban M.J. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. MoZ Biol 104:S41–S55
    [Google Scholar]
  8. Cecchini G., Ackrell B.A.C., Deshler J.O., Gunsalus R.P. 1986; Reconstitution of quinone reduction and characterization of Escherichia colifumarate reductase activity. J Biol Chem 261:1808–1814
    [Google Scholar]
  9. Chan M.K., Mukund S., Kletzin A., Adams M.W.W., Rees D.C. 1995; Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469
    [Google Scholar]
  10. Clarke G., Ward B. 1988; Purification and properties of trimethylamine IV-oxide reductase from Shewanellasp. NCMB 400. J Gen Microbiol 134:379–386
    [Google Scholar]
  11. Fersht A. 1977; The basic equations of enzyme kinetics; and enzyme-substrate complementarity and theories of enzyme catalysis. . In Enzyme Structure and Mechanism pp. 84-102244–271 San Francisco: W. H. Freeman;
    [Google Scholar]
  12. lobbi-Nivol C., Pommier J., Simala-Grant J., Mejean V., Giordano G. 1996; High substrate specificity and induction characteristics of trimethylamine N-oxide reductase of Escherichia coli.. Biochim Biophys Acta 1294:77–82
    [Google Scholar]
  13. Kelly D.P., Baker S.C. 1990; The organosulphur cycle: aerobic and anaerobic processes leading to turnover of C1sulphur compounds. FEMS Microbiol Rev 87:241–246
    [Google Scholar]
  14. Kiene R.P., Bates T.S. 1990; Biological removal of dimethyl- sulphide from sea water. Nature 345:702–705
    [Google Scholar]
  15. Kubota T., Miyazaki H. 1962; Polarography of pyridine IV- oxide and its alkyl derivatives. Bull Chem Soc Jpn 35:1549–1551
    [Google Scholar]
  16. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  17. Lee S.C., Renwick A.G. 1995; Sulfoxide reduction by rat intestinal flora and by Escherichia coli.. Biochem Pharmacol 49:1567–1576
    [Google Scholar]
  18. Lemire B.D., Robinson J.J., Weiner J.H. 1982; Identification of membrane anchor polypeptides of Escherichia colifumarate reductase. J Bacteriol 152:1126–1131
    [Google Scholar]
  19. McEwan A.G., Wetzstein H.G., Meyer O., Jackson J.B., Ferguson S.J. 1987; The periplasmic nitrate reductase of Rhodobacter capsulatus;purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch Microbiol 147:340–345
    [Google Scholar]
  20. Markwell M.A.D., Haas S.M., Bieber L.L., Tolbert N.E. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210
    [Google Scholar]
  21. Mejean V., lobbi-Nivol G, Lepelletier M., Giordano G., Chippaux M., Pascal M.-C. 1994; Trimethylamine N-oxide anaerobic respiration in Escherichia coli: involvement of the toroperon. Mol Microbiol 11:1169–1179
    [Google Scholar]
  22. Melville D.B. 1954; Biotin sulfoxide. J Biol Chem 208:495–501
    [Google Scholar]
  23. Neugebauer J.M. 1990; Detergents: an overview. Methods Enzymol 182:239–253
    [Google Scholar]
  24. Neumann S., Simon H. 1984; On a non-pyridine nucleotide- dependent 2-oxo-acid reductase of broad substrate specificity from two Proteusspecies. FEBS Lett 167:29–32
    [Google Scholar]
  25. Ochaiai E. 1953; Recent Japanese work on the chemistry of pyridine 1-oxide and related compounds. J Org Chem 18:534–551
    [Google Scholar]
  26. Ochaiai E. 1967 Aromatic Amine Oxides pp. 6–1791–97 Amsterdam: Elsevier;
    [Google Scholar]
  27. Oren A., Truper H.G. 1990; Anaerobic growth of halophilic archaebacteria by reduction of dimethyl sulfoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70:33–36
    [Google Scholar]
  28. Pascal M.-C., Burini J.-F., Chippaux M. 1984; Regulation of the trimethylamine N-oxide (TMAO) reductase in Escherichia coli:analysis of tor:Mudl operon fusion. Mol Gen Genet 195:351–355
    [Google Scholar]
  29. Romao M.J., Archer M., Moura I., Moura J.J.G., LeGall J., Engh R., Schneider M., Hof O., Huber R. 1995; Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas.. Science 270:1170–1176
    [Google Scholar]
  30. Rothery R.A., Weiner J.H. 1991; Alteration of the iron-sulfur cluster composition of Escherichia colidimethyl sulfoxide reductase by site-specific mutagenesis. Biochemistry 30:8296–8305
    [Google Scholar]
  31. Rothery R.A., Weiner J.H. 1993; Topological characterization of Escherichia coliDMSO reductase by electron paramagnetic spectroscopy of an engineered [3Fe-4S] cluster,. Biochemistry 32:5855–5861
    [Google Scholar]
  32. Rothery R.A., Simala-Grant i.L, Johnson J. L., Rajagopalan K. V. , Weiner J.H. 1995; Association of molybdopterin guanine dinucleotide with Escherichia colidimethyl sulfoxide reductase: effect of tungstate and a mobmutant. J bacterial 177:2057–2063
    [Google Scholar]
  33. Sambasivarao D., Weiner J. H. 1991a; Differentiation of the multiple S-and N-oxide reducing activities of Escherichia coli.. Carr Microbiol 23:105–110
    [Google Scholar]
  34. Sambasivarao D., Weiner J. H. 1991b; Dimethyl sulfoxide reductase of Escherichia coli-.an investigation of function and assembly by use of in vivocomplementation. J bacterial 173:5935–5943
    [Google Scholar]
  35. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Satoh T., Kurihar F.N. 1987; Purification and properties of dimethyl sulfoxide reductase containing a molybdenum cofactor from a photodenitrifier Rhodopseudomonas sphaeroidesf.s.denitrificans.. J biochem 102:191–197
    [Google Scholar]
  37. Schindelin H., Kisker C., Hilton J., Rajagopalan K.V., Rees D.C. 1996; Crystal structure of DMSO reductase: redox linked changes in molybdopterin coordination. Science 272:1615–1621
    [Google Scholar]
  38. Shukla O.P. 1984; Microbial transformation of pyridine derivatives. J Sci Ind Res 43:98–116
    [Google Scholar]
  39. Silvestro A., Pommier J., Giordano G. 1988; The inducible trimethylamine N-oxide reductase of Escherichia coliK12: bio-chemical and immunological studies. biochim biophys Acta 954:1–13
    [Google Scholar]
  40. Silvestro A., Pommier J., Pascal M.-C., Giordano G. 1989; The inducible trimethylamine N-oxide reductase of Escherichia coliK12: its localization and inducers. Biochim biophys Acta 999:208–216
    [Google Scholar]
  41. Trieber C.A., Rothery R.A., Weiner J.H. 1994; Multiple pathways of electron transfer in dimethyl sulfoxide reductase of Escherichia coli.. J Biol Chem 269:7103–7109
    [Google Scholar]
  42. Weiner J.H., Madssac D.P., Bishop R.E., Bilous P.T. 1988; Purification and properties of Escherichia colidimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. J bacterial 170:1505–1510
    [Google Scholar]
  43. Weiner J.H., Rothery R.A., Sambasivarao D., Trieber C.A. 1992; Molecular analysis of dimethyl sulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli.. Biochim Biophys Acta 1102:1–18
    [Google Scholar]
  44. Wood P.M. 1981; The redox potential for dimethyl sulphoxide reduction to dimethyl sulphide. FEBS Lett 124:11–14
    [Google Scholar]
  45. Yamamoto I., Okubo M., Ishimoto M. 1986; Further characterization of trimethylamine N-oxide reductase from Escherichia colia molybdoprotein. J Biochem 99:1773–1779
    [Google Scholar]
  46. Yamamoto I., Hohmura M., Ishimoto M. 1989; A novel gene,torb,for trimethylamine N-oxide reductase in Escherichia coli. . J Gen Appl Microbiol 35:95–105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3231
Loading
/content/journal/micro/10.1099/13500872-142-11-3231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error