Ferric-reductase activities in whole cells and cell fractions of () Free

Abstract

The ability of strains from serotype groups O1 and O2 to reduce Fe in the form of different chelates was investigated. All strains, grown in M9 minimal medium supplemented with 0·2% Casamino acids, reduced Fe complexed by citrate, nitrilotriacetic acid and EDTA. In whole cells, the degree of reduction was dependent on the Fe ligand and on the strain, with the greatest values corresponding to ferric dicitrate and serotype group O1 strains, respectively. The ferric-reductase activity increased, over the basal levels, when the cells were grown with iron added as ferric dicitrate, haemin or haemoglobin. All strains also reduced ferricyanide, a compound that is not transported into the bacterial cells. Ferricyanide reduction was also increased when the cells were grown in the presence of an iron source. All of the cell fractions (periplasm, membranes and cytoplasm) showed Fe-reducing activity, with the highest values observed in the presence of Mg, NADH and FAD in the assay buffer. Cytoplasmic ferric-reductase could be visualized using native polyacrylamide or starch gel electrophoresis, whereas the periplasmic and membrane reductase(s) could only be detected on starch gels. The results indicate the presence of different ferric-reductase activities in which could be involved in the different iron-acquisition systems present in this micro-organism, i.e. siderophore-mediated systems and siderophore-independent mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3187
1996-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3187.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3187&mimeType=html&fmt=ahah

References

  1. Adams T. J., Vartivarian S., Cowart R. E. 1990; Iron acquisition systems of Listeria monocytogenes. Infect Immun 58:2715–2718
    [Google Scholar]
  2. Angerer A., Klupp B., Braun V. 1992; Iron transport systems of Serratia marcescens. J Bacterial 174:1378–1387
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Conchas R. D. 1994 Distribución de los sistemas de transporte de hierro en cepas de Vibrio anguillarum patógenas para peces y su implicacin en la virulencia. PhD thesis University of Santiago:
    [Google Scholar]
  5. Cox C. D. 1980; Iron reductases from Pseudomonas aeruginosa. J Bacteriol 141:199–204
    [Google Scholar]
  6. Crane F. L, Roberts H., Lianne A. W., Low H. 1982; Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr 14:191–205
    [Google Scholar]
  7. Crosa J. H. 1989; Genetics and molecular biology of siderophore mediated iron transport in bacteria. Microbiol Rev 53:517–530
    [Google Scholar]
  8. Dailey H. A., Lascelles J. 1977; Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms. J Bacteriol 129:815–820
    [Google Scholar]
  9. Ecker D. J., Emery T. 1983; Iron uptake from ferrichrome A and iron citrate in Ustilago sphaerogena. J Bacteriol 155:616–622
    [Google Scholar]
  10. Emery T. 1987; Reductive mechanisms of iron assimilation. In Iron Transport in Microbes, Plants and Animals pp. 235–250 Winkelmann G., Van der Helm D., Neilands J. B. Edited by Weinheim: VCH Verlagsgesellschaft;
    [Google Scholar]
  11. Ernst J., Winkelmann G. 1977; Enzymatic release of iron from sideramines in fungi, NADH-sideramine oxidoreductase in Neurospora crassa. Biochim Biophys Acta 500:27–41
    [Google Scholar]
  12. Evans S. L., Arcenaux J. E. L., Byers B. R., Mark M. E. 1986; Ferrous iron transport in Streptococcus mutans. J Bacteriol 168:1096–1099
    [Google Scholar]
  13. Fischer E., Strehlow B., Hartz D., Braun V. 1990; Soluble and membrane-bound ferrisiderophore reductases of Escherichia coli K- 12. Arch Microbiol 153:329–336
    [Google Scholar]
  14. Fontecave M., Covés J., Pierre J. L. 1994; Ferric reductases or flavin reductases ?. BioMetals 7:3–8
    [Google Scholar]
  15. Hallé F., Meyer J. -M. 1989; Ferripyoverdine-reductase activity in Pseudomonas fluorescens. Biol Metals 2:18–24
    [Google Scholar]
  16. Hoff K. A. 1989; Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl Environ Microbiol 55:1775–1786
    [Google Scholar]
  17. Ingledew W. J., Poole R. K. 1984; The respiratory chains of Escherichia coli. Microbiol Rev 48:222–271
    [Google Scholar]
  18. Jaskula J. C., Letain T. E., Roof S. K., Skare J. T., Postle K. 1994; Role of the TonB amino terminus in energy transduction between membranes. J Bacteriol 176:2326–2338
    [Google Scholar]
  19. Johnson W., Varner L., Poch M. 1991; Acquisition of iron by Legionella pneumophila: role of an iron reductase. Infect Immun 59:2376–2386
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  21. Lascelles J., Burke K. A. 1978; Reduction of ferric iron by l- lactate and dl-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system. J Bacteriol 134:585–589
    [Google Scholar]
  22. Lemos M. L., Salinas P., Toranzo A. E., Barja J. L., Crosa J. H. 1988; Chromosome-mediated iron-uptake system in pathogenic strains of Vibrio anguillarum. J Bacteriol 170:1920–1925
    [Google Scholar]
  23. Lesuisse E., Raguzzi F., Crichton R. R. 1987; Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol 133:3229–3236
    [Google Scholar]
  24. Lesuisse E., Horion B., Labbe P., Hilger F. 1991; The plasma membrane ferric-reductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP. Biochem J 280:545–548
    [Google Scholar]
  25. Mazoy R., Lemos M. L. 1991; Iron-binding proteins and heme compounds as iron sources for Vibrio anguillarum. . Curr Microbiol 23:221–226
    [Google Scholar]
  26. Mazoy R., Lemos M. L. 1996; Identification of heme-binding proteins in the cell membranes of Vibrio anguillarum. FEMS Microbiol Lett 135:265–270
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Moody M. D., Dailey H. A. 1983; Aerobic ferrisiderophore reductase assay and activity stain for native polyacrylamide gels. Anal Biochem 134:235–239
    [Google Scholar]
  29. Muroga K., lida M., Matsumoto H., Nakai T. 1986; Detection of Vibrio anguillarum from waters. Bull Jpn Soc Sci Fish 52:641–647
    [Google Scholar]
  30. Myers C. R., Myers J. M. 1992; Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438
    [Google Scholar]
  31. Myers C. R., Myers J. M. 1993; Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol Lett 108:15–22
    [Google Scholar]
  32. Nellands J. B., Konopka K., Schwyn B., Coy M., Francis R. T., Paw H., Bagg A. 1987; Comparative biochemistry of microbial iron assimilation. In Iron Transport in Microbes, Plants and Animals pp. 235–250 Winkelmann G., van der Helm D., Neilands J. B. Edited by Weinheim: VCH Verlagsgesellschaft;
    [Google Scholar]
  33. Poch M. T., Johnson W. 1993; Ferric reductases of Legionella pneumophila. BioMetals 6:107–114
    [Google Scholar]
  34. Roy N., Bhattacharyya P., Chakrabartty K. 1994; Iron acquisition during growth in an iron-deficient medium by Rhizobium sp. isolated from Cicer arietinum. Microbiology 140:2811–2820
    [Google Scholar]
  35. Stookey L. L. 1970; Ferrozine - a new spectrophotometric reagent for iron. Anal Chem 42:779–781
    [Google Scholar]
  36. Tolmasky M. E., Crosa J. H. 1991; Regulation of plasmidmediated iron transport and virulence in Vibrio anguillarum. . BioMetals 4:33–35
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3187
Loading
/content/journal/micro/10.1099/13500872-142-11-3187
Loading

Data & Media loading...

Most cited Most Cited RSS feed