1887

Abstract

Within the framework of an international project for the sequencing of the entire genome, this paper communicates the sequencing of a chromosome region containing the and loci (65 kb), which creates a 177 kb contig covering the region from to This 65 kb region contains 64 ORFs (62 complete and two partial genes). The 14th, 15th and 17th genes correspond to and encoding the antiterminator for transcription, -glucanase (lichenase) and catalase 2, respectively. The 11th, 30th, 36th, 39th, 41st, 45th–48th, 51st and 58th genes are designated and because their products probably encode ATP-dependent RNA helicase, tripeptidase, UDP-glucose-4-epimerase, aldehyde dehydrogenase, multiple sugar-binding transport ATP-binding protein, the respective components of cytochrome ubiquinol oxidase and ATP-binding cassette transporter, -factor of RNA polymerase and catalase, respectively. The 60th–64th genes are which are probably involved in cellobiose utilization. Gene organization and gene features in the region are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3113
1996-11-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3113.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3113&mimeType=html&fmt=ahah

References

  1. Azevedo V., Alvarez E., Zumstein E., Damiani G., Sgaramella V., Ehrlich S. D., Serror P. 1993; An ordered collection of bacillus subtilis DNA segments cloned in yeast artificial chromosomes. Proc Natl Acad Sci USA 906047–6051
    [Google Scholar]
  2. Cheng S., Chang S. -Y., Gravitt P., Respess R. 1994; Long PCR. Nature 369:684–685
    [Google Scholar]
  3. Crutz A. M., Steinmetz M., Aymerich S., Richter R., Le Coq D. 1990; Induction of levansucrase in bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J bacteriol 172:1043–1050
    [Google Scholar]
  4. Débarbouillé M., Arnaud M., Fouet A., Klier A., Rapoport G. 1990; The sacT gene regulating the sacPA operon in bacillus subtilis shares strong homology with transcriptional antiterminators. J bacteriol 172:3966–3973
    [Google Scholar]
  5. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. 1968; A proposal for a uniform nomenclature in bacterial genetics. J Gen Microbiol 50:1–14
    [Google Scholar]
  6. Engelmann S., Lindner C., Hecker M. 1995; Cloning, nucleotide sequence, and regulation of katE encoding a σB dependent catalase in bacillus subtilis.. J bacteriol 177:5598–5605
    [Google Scholar]
  7. Fang H., Gennis R. B. 1993; Identification of the transcriptional start site of the cyd operon from Escherichia coli.. FEMS Microbiol Lett 108:237–242
    [Google Scholar]
  8. Glaser P., Kunst F., Arnaud M., Coudart M.-P., Gonzales W., Hullo M.-F., lonescu M., Lubochinsky B., Marcelino L., Moszer H., Presecan E., Santana M., Schneider E., Schweizer J., Vertes A., Rapoport G., Danchin A. 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384
    [Google Scholar]
  9. Higgins C. F., Hyde S. C., Mimmack M. M., Gileadi U., Gill D. R., Gallagher M. P. 1990; Binding protein-dependent transport systems. J bioenerg biomembr 22:571–592
    [Google Scholar]
  10. Itaya M., Tanaka T. 1991; Complete physical map of the bacillus subtilis 168 chromosome constructed by a gene-directed mutagenesis method. J Mol Biol 220:631–648
    [Google Scholar]
  11. Lai X., Ingram L. O. 1993; Cloning and sequencing of a cellobiose phosphotransferase system operon from bacillus stearo- thermophilus XL-65-6 and functional expression in Escherichia coli.. J bacteriol 175:6441–6450
    [Google Scholar]
  12. Lonetto M. A., Brown K. L., Rudd K. E., Buttner M. J. 1994; Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase a factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA 917573–7577
    [Google Scholar]
  13. Moszer I., Glaser P., Danchin A. 1995; SubtiList: a relational database for the bacillus subtilis genome. Microbiology 141:261–268
    [Google Scholar]
  14. Murphy N., McConnell D. J., Cantwell B. A. 1984; The DNA sequence of the gene and genetic control sites for the excreted b. subtilis enzyme β-glucanase. Nucleic Acids Res 12:5355–5367
    [Google Scholar]
  15. Ogasawara N., Nakai S., Yoshikawa H. 1994; Systematic sequencing of the 180 kilobase region of the bacillus subtilis chromosome containing the replication origin. DNA Res 1:1–14
    [Google Scholar]
  16. Parker L. L., Hall B. G. 1990; Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics 124:455–471
    [Google Scholar]
  17. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 852444–2448
    [Google Scholar]
  18. Poole R. K., Hatch L., Cleeter M. W., Gibson F., Cox G. B., Wu G. 1993; Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol Microbiol 10:421–430
    [Google Scholar]
  19. Reizer J., Reizer A., Saier M. H. 1990; The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus.. Res Microbiol 141:1061–1067
    [Google Scholar]
  20. Riley M. 1993; Functions of the gene products of Escherichia coli.. Microbiol Rev 57:862–952
    [Google Scholar]
  21. Saxild H. H., Andersen L. N., Hammer K. 1996; dra-nupC-pdp operon of bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR- encoded DeoR repressor protein. J bacteriol 178:424–434
    [Google Scholar]
  22. Schmid S. R., Linder P. 1992; D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6:283–291
    [Google Scholar]
  23. Schnetz K., Stülke J., Gertz S., Krüger S., Krieg M., Hecker M., Rak B. 1996; LicT, a bacillus subtilis transcriptional anti-terminator protein of the BglG family. J bacteriol 178:1971–1979
    [Google Scholar]
  24. Sorokin A., Zumstein E., Azevedo V., Ehrlich S. D., Serror P. 1993; The organization of the bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol Microbiol 10:385–395
    [Google Scholar]
  25. Stock J. B., Ninfa A., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  26. Yoshida K., Sano H., Miwa Y., Ogasawara N., Fujita Y. 1994; Cloning and nucleotide sequencing of a 15 kb region of the bacillus subtilis genome containing the iol operon. Microbiology 140:2289–2298
    [Google Scholar]
  27. Yoshida K., Sano H., Seki S., Oda M., Fujimura M., Fujita Y. 1995a; Cloning and sequencing of a 29 kb region of the Bacillus subtilis genome containing the hut and wap A loci. Microbiology 141:337–343
    [Google Scholar]
  28. Yoshida K., Seki S., Fujimura M., Miwa Y., Fujita Y. 1995b; Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons. DNA Res 2:61–69
    [Google Scholar]
  29. Yoshida K., Fujimura M., Yanai N., Fujita Y. 1995c; Cloning and sequencing of a 23-kb region of the Bacillus subtilis genome between the iol and hut operons. DNA Res 2:295–301
    [Google Scholar]
  30. Zeigler D. R., Dean D. H. 1990; Orientation of genes in the Bacillus subtilis chromosome. Genetics 125:703–708
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-11-3113
Loading
/content/journal/micro/10.1099/13500872-142-11-3113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error