1887

Abstract

Within the framework of the international programme to sequence the genome of strain 168, we were allocated the region between (256°) and (240°). The sequencing of this region is now complete and we report our primary analysis of the 114 kb region containing 114 ORFs. In addition to previously characterized genes, we have identified genes involved in the utilization of plant cell wall polysaccharides, stress responses and the metabolism of amino acids, cell walls, DNA and fatty acids. We also discuss various structural and physical features, including the orientation of genes with respect to replication, putative start and stop codons, ribosome binding sites and -independent transcription terminators.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3067
1996-11-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3067.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3067&mimeType=html&fmt=ahah

References

  1. Aldea M., Garrido T., Hemandez-Chico G., Vicente ., Kushner S. R. 1989; Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morpho- gene. EMBO J 8:3923–3931
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic Local Alignment Search Tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Anagnostopoulos G., Spizizen G. 1961; Requirements for transformation of Bacillus subtilis.. J Bacteriol 81:741–746
    [Google Scholar]
  4. Anagnostopoulos G., Piggot P. J., Hoch J. A. 1993; The genetic map of Bacillus subtilis.. In Bacillus subtilis and Other Grampositive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 425–461 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Ariza R. R., Cohen S. P., Bachhawat N., Levy S. B., Demple B. 1994; Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli.. J Bacteriol 176:143–148
    [Google Scholar]
  6. Azevedo V., Alvarez E., Zumstein E., Damiani G., Sgaramella V., Ehrlich S. D., Serror P. 1993; An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes. Proc Natl Acad Sci USA 906047–6051
    [Google Scholar]
  7. Bedzyk L. A., Escudero K. W., Gill R. E., Griffin K. J., Frerman F. E. 1993; Cloning, sequencing, and expression of the genes encoding subunits of Paracoccus denitrificans electron transfer flavo- protein. J Biol Chem 268:20211–20217
    [Google Scholar]
  8. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  9. Biswas I., Hsieh P. 1996; Identification and characterization of a thermostable mutS homolog from Thermus aquaticus.. J Biol Chem 271:5040–5048
    [Google Scholar]
  10. Black P. N., Dirusso C. C., Metzger A. K., Heimert T. L. 1992; Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J Biol Chem 267:25513–25520
    [Google Scholar]
  11. Boynton Z. L., Bennett G. N., Rudolph F. B. 1996; Cloning, sequencing and expression of clustered genes encoding beta- hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015–3024
    [Google Scholar]
  12. Brakhage A. A., Wozny M. 1990; Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie 72:725–734
    [Google Scholar]
  13. Brunskill E. W., Bayles K. W. 1996; Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus.. J Bacteriol 178:611–618
    [Google Scholar]
  14. Burland V. D., Plunkett G., Sofia H. J., Daniels D. L., Blattner F. R. 1995; Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92·8 through 100 minutes. Nucleic Acids Res 23:2105–2119
    [Google Scholar]
  15. Carpenter P. B., Zuberi A. R., Ordal G. W. 1993; Bacillus subtilis flagellar proteins FliP, FliQ, FliR and FlhB are related to Shigella flexneri virulence factors. Gene 137:243–245
    [Google Scholar]
  16. Chen N. -Y., Zhang J. -J., Paulus H. 1989; Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli.. J Gen Microbiol 135:2931–2940
    [Google Scholar]
  17. Cutting S., Mandelstam J. 1986; The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis.. J Gen Microbiol 132:3013–3024
    [Google Scholar]
  18. Demerec M., Abelberg E. A., Clark A. J., Hartman P. E. 1968; Proposal for a uniform nomenclature in bacterial genetics. J Gen Microbiol 5O:1–14
    [Google Scholar]
  19. Fath M. J., Mahanty H. K., Kolter R. 1989; Characterization of a purF operon mutation which affects colicin V production. J Bacteriol 171:3158–3161
    [Google Scholar]
  20. Fleischmann R. D.others 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  21. Flipphi M. J., Panneman H., van der Veen P., Visser J., de Graaff H. 1993; Molecular cloning, expression and structure of the endo-l,5-α-L-arabinase gene of Aspergillus niger.. Appl Microbiol Biotechnol 40:318–326
    [Google Scholar]
  22. Fraser C. M.others 1995; The minimal gene complement of Mycoplasma genitalium.. Science 270:397–403
    [Google Scholar]
  23. Fujita N., Mori H., Yura T., Ishihama A. 1994; Systematic sequencing of the Escherichia coli genome: analysis of the 2·4– 4·1 min (110,917-193,643 bp) region. Nucleic Acids Res 22:917–193
    [Google Scholar]
  24. Gerth U., Wipat A., Harwood C. R., Carter N., Emmerson P. T., Hecker M. 1996; Sequence and transcription analysis of clpX-a class III heat shock gene of Bacillus subtilis.. Gene (in press)
    [Google Scholar]
  25. Glaser P., Kunst F., Arnaud M., Coudart M. -P., Gonzales W., Hullo M. -F., lonescu M., Lubochinsky B., Marcelino L., Moszer I., Presecan E., Santana M., Schneider E., Schweizer J., Vertes A., Rapoport G., Danchin A. 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384
    [Google Scholar]
  26. Gold L., Stormo G., Saunders R. 1984; Escherichia coli translational initiation factor IF3: a unique case of translational regulation. Proc Natl Acad Sci USA 817061–7065
    [Google Scholar]
  27. Gottesman S., Clark W. P., de Crecy-Lagard V., Maurizi M. R. 1993; ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem 268:22618–22626
    [Google Scholar]
  28. Grandoni J. A., Zahler S. A., Calvo J. M. 1992; Transcriptional regulation of the ilv-leu operon of Bacillus subtilis.. J Bacteriol 174:3212–3219 (erratumJ Bacteriol174, 4863)
    [Google Scholar]
  29. Griffiths P. L., Park R. W., Connerton I. F. 1995; The gene for Campylobacter trigger factor: evidence for multiple transcription start sites and protein products. Microbiology 141:1359–1367
    [Google Scholar]
  30. Guthrie B., Wickner W. 1990; Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J Bacteriol 172:5555–5562
    [Google Scholar]
  31. Harwood C. R., Archibald A. R. 1990; Growth, maintenance and general techniques. In Molecular Biological Methods for Bacillus pp. 1–21 Edited by Harwood C. R., Cutting S. M. Chichester: John Wiley & Sons;
    [Google Scholar]
  32. Higgins C. F., Hiles I. D., Salmond G. P. C., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W., Hermondson M. A. 1986; A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448–450
    [Google Scholar]
  33. I’Anson K. J. A., Movahedi S., Griffin H. G., Gasson M. J., Mulholland F. 1995; A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiology 141:2873–2881
    [Google Scholar]
  34. Imai R., Sekiguchi T., Nosoh Y., Tsuda K. 1987; The nucleotide sequence of the 3-isopropylmalate dehydrogenase gene from Bacillus subtilis.. Nucleic Acids Res 15:4988
    [Google Scholar]
  35. Itaya M. 1993; Physical map of the Bacillus subtilis 168 chromosome. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 463–472 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Kaneko Y., Toh-e A., Banno I., Oshima Y. 1989; Molecular characterization of a specific p-nitrophenylphosphatase gene, PH013, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae.. Mol Gen Genet 220:133–139
    [Google Scholar]
  37. Kobayashi T., Romaniec M. P. M., Barker P. J., Gerngross U. T., Demain A. L. 1993; Nucleotide sequence of gene celM encoding a new endoglucanase (CelM) of Clostridium thermocellum and purification of the enzyme. J Ferment Bioeng 76:251–256
    [Google Scholar]
  38. Koonin E. V., Rudd K. E. 1993; SpoU protein of Escherichia coli belongs to a new family of putative rRNA methylases. Nucleic Acids Res 21:5519
    [Google Scholar]
  39. Lazarevic V., Margot P., Suldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N- acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961
    [Google Scholar]
  40. Lee N., Gielow W., Martin R., Hamilton E., Fowler A. 1986; The organization of the araBAD operon of Escherichia coli.. Gene 47:231–244
    [Google Scholar]
  41. Magnusson K., Phillips M. K., Guest J. R., Rutberg L. 1986; Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase. J Bacteriol 166:1067–1071
    [Google Scholar]
  42. Manin C., Shareek F., Morosoli R., Kluepfel D. 1994; Purification and characterization of an α-l-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (ab/A).. Biochem J 302:443–449
    [Google Scholar]
  43. Molina I., Pellicer M. T., Badia J., Aguilar J., Baldoma L. 1994; Molecular characterisation of Escherichia coli malate synthase G differentiation with the malate synthase isoenzyme. Eur J Biochem 224:541–548
    [Google Scholar]
  44. Nagahari K., Sekaguchi K. 1978; Cloning of the Bacillus subtilis leucine A, B and C genes with Escherichia coli plasmids and the expression of the leuC gene in Escherichia coli.. Mol Gen Genet 158:263–270
    [Google Scholar]
  45. Ogasawara N., Nakai S., Yoshikawa H. 1994; Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res 1:1–14
    [Google Scholar]
  46. Ogasawara N., Moriya S., Mazza P. G., Yoshikawa N. 1986; Nucleotide sequence and organisation of the dnaB and neighbouring genes on the Bacillus subtilis chromosome. Nucleic Acids Res 14:9989–9999
    [Google Scholar]
  47. Pan W., Spratt B. G. 1994; Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11:769–775
    [Google Scholar]
  48. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 852444–2448
    [Google Scholar]
  49. Phillips M. K., Hederstedt L., Hasnain S., Rutberg L., Guest J. R. 1987; Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 dehydro¬genase complex. J Bacteriol 169:864–873
    [Google Scholar]
  50. Plumbridge J. A. 1989; Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon. Mol Microbiol 3:505–515
    [Google Scholar]
  51. Pon C. L., Brombach M., Thamm S., Gualerzi C. O. 1989; Cloning and characterization of a gene cluster from Bacillus stearothermophilus comprising infC, rpml and rplT.. Mol Gen Genet 218:355–357
    [Google Scholar]
  52. Priebe S. D., Hadi S. M., Greenberg B., lacks S. A. 1988; Nucleotide sequence of the hexA gene for DNA mismatch repair in Streptococcus pneumoniae and homology of hex A to mutS of Escherichia coli and Salmonella typbimurium.. J Bacteriol 170:190–196
    [Google Scholar]
  53. Putzer H., Brakhage A., Grunberg-Manago M. 1990; Independent genes for two threonyl-tRNA synthetases in Bacillus subtilis.. J Bacteriol 172:4593–4602
    [Google Scholar]
  54. Raha M., Kawagishi I., Müller V., Kihara M., MacNab R. M. 1992; Escherichia coli produces a cytoplasmic ä-amylase, AmyA. J Bacteriol 174:6644–6652
    [Google Scholar]
  55. Raha M., Kihara M., Kawagishi I., MacNab R. M. 1993; Organization of the Escherichia coli and Salmonella typbimurium chromosomes between flagella regions Ilia and Illb, including a large non-coding region. J Gen Microbiol 139:1401–1407
    [Google Scholar]
  56. Reizer J., Michotey V., Reizer A., Saier M. H. 1994; Novel phosphotransferase system genes revealed by bacterial genome analysis: unique putative fructose- and glucoside-specific systems. Protein Sci 3:440–450
    [Google Scholar]
  57. Riethdorf S., Völker U., Gerth U., Winkler A., Engelmann S., Hecker M. 1994; Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene. J Bacteriol 176:6518–6527
    [Google Scholar]
  58. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  59. Sa-Nogueira I., de Lencastre H. 1989; Cloning and charac¬terization of araA, araB and araD, the structural genes for l- arabinose utilization in Bacillus subtilis.. J Bacteriol 171:4088–4091
    [Google Scholar]
  60. Sa-Nogueira I., Paveia H., de Lencastre H. 1988; Isolation of constitutive mutants for l-arabinose utilization in Bacillus subtilis.. J Bacteriol 170:2855–2857
    [Google Scholar]
  61. Schmidt R., Decatur A. L., Rather P. N., Moran C. P., Losick R. 1994; Bacillus subtilis Lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma(G). J Bacteriol 176:6528–6537
    [Google Scholar]
  62. Schultz E., Matin A. 1991; Molecular and functional characterization of a carbon starvation gene of Escherichia coli.. J Mol Biol 218:129–140
    [Google Scholar]
  63. Simonen M., Palva I. 1993; Protein secretion in Bacillus species. Microbiol Rev 57:109–137
    [Google Scholar]
  64. Slynn G. M., Sammons R. L., Smith D. A., Moir A., Corfe B. M. 1994; Molecular genetical and phenotypical analysis of the gerM spore germination gene of Bacillus subtilis 168. FEMS Microbiol Lett 121:315–320
    [Google Scholar]
  65. Stoll E., Ericsson L. H., Zuber H. 1973; The function of the two subunits of thermophilic aminopeptidase I. Proc Natl Acad Sci USA 703781–3784
    [Google Scholar]
  66. Torri A. F., Englund P. T. 1995; A DNA polymerase beta in the mitochondrion of the trypanosomatid Crithidia fasciculata.. J Biol Chem 270:3495–3497
    [Google Scholar]
  67. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods Enymol 153:3–15
    [Google Scholar]
  68. Waters S. H., Rogowsky P., Grinsted J., Altenbuchner J., Schmitt R. 1983; The tetracycline resistance determinant of RPI and Tn 1721: nucleotide sequence analysis. Nucleic Acids Res 11:6089–6105
    [Google Scholar]
  69. Williams S. G., Greenwood J. A., Jones C. W. 1992; Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and β-galactosidase in Agrobacterium radiobacter.. Mol Microbiol 6:1755–1768
    [Google Scholar]
  70. Yura T., Mori H., Nagai H., Nagata T., Ishihama A., Fujita N., Isono K., Mizobuchi K., Nakata A. 1992; Systematic sequencing of the Escherichia coli genome: analysis of the 0-2·4 min region. Nucleic Acids Res 20:3305–3308
    [Google Scholar]
  71. Zhang J. J., Hu F. M., Chen N. Y., Paulus H. 1990; Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168. J Bacteriol 172:701–708
    [Google Scholar]
  72. Zimmer W., Aparicio C., Elmerich C. 1991; Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: identification and sequencing of a trpGDC cluster. Mol Gen Genet 229:41–51
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3067
Loading
/content/journal/micro/10.1099/13500872-142-11-3067
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error