Skip to content
1887

Abstract

Within the framework of the international project for sequencing the entire genome, we have determined the complete sequence of the segment flanking the gene cluster (55°) as far as (52°). This segment (34960 bp) contains, as well as 12 genes already identified as part of the operon, 17 putative ORFs and one partial one. Two of them ( and ) are known genes. The gene product of (formerly ) shows significant similarity to oxidoreductases (phenoxazine synthase and bilirubin oxidase). The putative products of ORFs (Czd protein), (MoxR), (CNG-channel and cGMP-channel proteins from eukaryotes), (hypothetical 32·9 kDa protein of ), (amino acid permease) and (adenine deaminase) were similar to proteins in data banks.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3027
1996-11-01
2025-01-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3027.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3027&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation of Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  2. Anagnostopoulos C., Piggot P. J., Hoch J. A. 1993; The genetic map of Bacillus subtilis. In Bacillus subtilis and Other Grampositive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 425–461 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. von Blohm G., Kappes R., Bremer E. 1996; Osmoregulation in Bacillus subtilis: identification of an osmotically regulated proline uptake system. In Abstracts of the VAAM Spring Meeting, Bayreuth24–27 March 1996 p. 45
    [Google Scholar]
  4. Donovan W., Zheng L., Sandman K., Losick R. 1987; Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol 196:1–10
    [Google Scholar]
  5. Ebbole D. J., Zalkin H. 1987; Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem 262:8274–8287
    [Google Scholar]
  6. Glaser P., Kunst F., Arnaud M., Coudart M. -P., Gonzales W., Hullo M. -F., Ionescu M., Lubochinsky B., Marcelino L., Moszer I., Presecan E., Santana M., Schneider E., Schweizer J., Vertes A., Rapoport G., Danchin A. 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384
    [Google Scholar]
  7. Itaya M., Tanaka T. 1991; Complete physical map of the Bacillus subtilis 168 chromosome constructed by a gene-directed mutagenesis method. J Mol Biol 220:631–648
    [Google Scholar]
  8. McLaughlin J. R., Murray GL., Rabinowitz J. C. 1981; Unique features in the ribosome-binding site sequence of the Grampositive Staphylococcus aureus β-lactamase gene. J Biol Chem 256:11183–11291
    [Google Scholar]
  9. Mäntsälä P., Zalkin H. 1992; Cloning and sequence of Bacillus subtilis pur A and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol 174:1883–1890
    [Google Scholar]
  10. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Saxild H. H., Nygaard P. 1987; Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 169:2977–2983
    [Google Scholar]
  12. Saxild H. H., Nygaard P. 1988; Gene-enzyme relationships of the purine biosynthesis pathway in Bacillus subtilis. Mol Gen Genet 211:160–167
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-11-3027
Loading
/content/journal/micro/10.1099/13500872-142-11-3027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error