1887

Abstract

Within the framework of the international project for sequencing the entire genome, we have determined the complete sequence of the segment flanking the gene cluster (55°) as far as (52°). This segment (34960 bp) contains, as well as 12 genes already identified as part of the operon, 17 putative ORFs and one partial one. Two of them ( and ) are known genes. The gene product of (formerly ) shows significant similarity to oxidoreductases (phenoxazine synthase and bilirubin oxidase). The putative products of ORFs (Czd protein), (MoxR), (CNG-channel and cGMP-channel proteins from eukaryotes), (hypothetical 32·9 kDa protein of ), (amino acid permease) and (adenine deaminase) were similar to proteins in data banks.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3027
1996-11-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3027.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3027&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation of Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  2. Anagnostopoulos C., Piggot P. J., Hoch J. A. 1993; The genetic map of Bacillus subtilis. In Bacillus subtilis and Other Grampositive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 425–461 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. von Blohm G., Kappes R., Bremer E. 1996; Osmoregulation in Bacillus subtilis: identification of an osmotically regulated proline uptake system. In Abstracts of the VAAM Spring Meeting, Bayreuth24–27 March 1996 p. 45
    [Google Scholar]
  4. Donovan W., Zheng L., Sandman K., Losick R. 1987; Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol 196:1–10
    [Google Scholar]
  5. Ebbole D. J., Zalkin H. 1987; Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem 262:8274–8287
    [Google Scholar]
  6. Glaser P., Kunst F., Arnaud M., Coudart M. -P., Gonzales W., Hullo M. -F., Ionescu M., Lubochinsky B., Marcelino L., Moszer I., Presecan E., Santana M., Schneider E., Schweizer J., Vertes A., Rapoport G., Danchin A. 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384
    [Google Scholar]
  7. Itaya M., Tanaka T. 1991; Complete physical map of the Bacillus subtilis 168 chromosome constructed by a gene-directed mutagenesis method. J Mol Biol 220:631–648
    [Google Scholar]
  8. McLaughlin J. R., Murray GL., Rabinowitz J. C. 1981; Unique features in the ribosome-binding site sequence of the Grampositive Staphylococcus aureus β-lactamase gene. J Biol Chem 256:11183–11291
    [Google Scholar]
  9. Mäntsälä P., Zalkin H. 1992; Cloning and sequence of Bacillus subtilis pur A and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol 174:1883–1890
    [Google Scholar]
  10. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Saxild H. H., Nygaard P. 1987; Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 169:2977–2983
    [Google Scholar]
  12. Saxild H. H., Nygaard P. 1988; Gene-enzyme relationships of the purine biosynthesis pathway in Bacillus subtilis. Mol Gen Genet 211:160–167
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3027
Loading
/content/journal/micro/10.1099/13500872-142-11-3027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error