1887

Abstract

The effect of the respiratory electron acceptor nitrous oxide on the synthesis of the photosynthetic apparatus of was examined. In phototrophically grown cells, the addition of nitrous oxide caused a reduction in the level of light-harvesting complex I and light-harvesting complex II under conditions of high light intensity (200 W m) and low light intensity (16 W m). 5-Aminolaevulinate synthase activity was decreased during growth in the presence of nitrous oxide and this limited production of spectral complexes since addition of exogenous 5-aminolaevulinic acid partially suppressed the effect of nitrous oxide. The effect of nitrous oxide on the expression of the operons encoding the pigment-binding proteins of light-harvesting complex I (), light-harvesting complex II () and the two isoenzymes of 5-aminolaevulinate synthase ( and ) were measured using transcriptional fusions to Nitrous oxide caused a decrease in and transcription. However, there was an apparent increase in the expression of and transcriptional fusions. The level of light-harvesting complexes in cells grown in the dark with different electron acceptors was also examined. Cells grown anaerobically with DMSO had a higher level of light-harvesting complexes than those grown anaerobically with nitrous oxide as electron acceptor. Cells grown aerobically had the lowest level of light-harvesting complexes. It is proposed that FnrL-dependent and FnrL-independent expression of photosynthesis genes is modulated by redox changes elicited by nitrous oxide respiration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-10-2831
1996-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/10/mic-142-10-2831.html?itemId=/content/journal/micro/10.1099/13500872-142-10-2831&mimeType=html&fmt=ahah

References

  1. Aagard J., Sistrom W. R. 1972; Control of synthesis of reaction center bacteriochlorophyll in Khodopseudomonas sphaeroides . Photochem Photobio1 15:209–225
    [Google Scholar]
  2. Berks B. C., Ferguson S. J., Moir J. W. B., Richardson D. J. 1995; Enzymes and associated electron transport systems that catalyse the reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232:97–173
    [Google Scholar]
  3. Bonnett T. C., Cobine P., Sockett R. E., McEwan A. G. 1995; Phenotypic characterization and genetic complementation of di- methylsulfoxide respiratory mutants of Rhodobacter sphaeroides and Rhodobacter capsulatus . FEMS Microbiol Lett 133:163–168
    [Google Scholar]
  4. Buggy J., Bauer C. E. 1995; Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus . J Bacteriol 177:6958–6965
    [Google Scholar]
  5. Buggy J. J., Sganga M. W., Bauer C. E. 1994; Characterisation of a light responding /raw-activator responsible for differentially controlling reaction center and light-harvesting I gene expression in Rhodobacter capsulatus . J Bacteriol 176:6936–6943
    [Google Scholar]
  6. Burnham B. F. 1970; 5-aminolevulinic acid synthase. Methods Enzymol 17:195–204
    [Google Scholar]
  7. Clark J. M. Jr Switzer R. L. 1977 Experimental Biochemistry. p. 97. San Francisco: W. H. Freeman;
    [Google Scholar]
  8. Clayton R. R. 1966; Spectroscopic analysis of bacterio- chlorophylls in vitro and in vivo . Photochem Photobiol 5:669–677
    [Google Scholar]
  9. Clayton R. K. 1970 Eight and Living Matter 1 The Physical Part New York: McGraw-Hill;
    [Google Scholar]
  10. Clement-Metral J. D. 1979; Activation of ALA synthase by reduced thioredoxin in Rhodopseudomonas sphaeroides Y. FEBS Lett 101:116–120
    [Google Scholar]
  11. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68
    [Google Scholar]
  12. Eraso J. M., Kaplan S. 1994; prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides . J Bacteriol 177:2695–2706
    [Google Scholar]
  13. Eraso J. M., Kaplan S. 1995; Oxygen-insensitive synthesis of photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol 177:2695–2706
    [Google Scholar]
  14. Ferguson S. J., Jackson J. B., McEwan A. G. 1987; Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Rev 46:117–143
    [Google Scholar]
  15. Garcia-Horsman J. A., Barquera B., Rumbiey J., Ma J., Gennis R. B. 1994; The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600
    [Google Scholar]
  16. Gomelsky M., Kaplan S. 1995; Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor ofpuc and bchF expression. J Bacteriol 177:1634–1637
    [Google Scholar]
  17. Groves J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J. 1996; Escherichia coli K-12 genes essential for the synthesis of r-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol 19:467–481
    [Google Scholar]
  18. Hunter C. N., McGlynn P., Ashby M. K., Burgess J. G., Olsen J. D. 1991; DNA sequencing and complementation analysis of the bchA-puf operon of Rhodobacter sphaeroides: in vivo mapping of the oxygen-regulated pup promoter. Mol Microbiol 5:2649–2661
    [Google Scholar]
  19. Jones M. R., Richardson D. J., McEwan A. G., Ferguson S. J., Jackson J. B. 1990; In vivo redox poising of the cyclic electron transport system of Rhodobacter capsulatus and the effects of the auxiliary oxidants nitrate, nitrous oxide and trimethylamine-N-oxide as revealed by multiple short flash excitation. Biochim Biophys Acta 1017:209–216
    [Google Scholar]
  20. Kiley P. J., Kaplan S. 1987; Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides B800-850 a and B800-850 b genes. J Bacteriol 169:3268–3275
    [Google Scholar]
  21. Kiley P. J., Kaplan S. 1988; Molecular genetics of photo-synthetic membrane biosynthesis in Rhodobacter sphaeroides . Microbiol Rev 52:50–69
    [Google Scholar]
  22. Kiley P. J., Donohue T. J., Havelka W. A., Kaplan S. 1987; DNA sequence and in vitro expression of the B875 light-harvesting polypeptides of Rhodobacter sphaeroides . J Bacteriol 169:742–750
    [Google Scholar]
  23. Klug G. 1993; The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol Microbiol 9:1–7
    [Google Scholar]
  24. Lascelles J., Altshuler T. 1969; Mutant strains of Rhodo- pseudomonas sphaeroides lacking 3-aminolevulinate synthase: growth, heme, and bacteriochlorophyll synthesis. J Bacteriol 98:721–727
    [Google Scholar]
  25. Lazazzera B. A., Beinert H., Khoroshilova N., Kennedy M. C., Kiley P. J. 1996; DNA binding and dimerization of the Fe-S containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem 271:2762–2768
    [Google Scholar]
  26. Lee J. K., Kaplan S. 1992; rA-Acting regulatory elements involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides . J Bacteriol 174:1158–1171
    [Google Scholar]
  27. Lee J. K., Kiley P. J., Kaplan S. 1989; Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides . J Bacteriol 171:3391–3405
    [Google Scholar]
  28. McEwan A. G. 1994; Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Leeuwenhoek 66:151–164
    [Google Scholar]
  29. McEwan A. G., Greenfield A. J., Wetzstein H. G., Jackson J. B., Ferguson S. J. 1985; Nitrous oxide respiration by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata . J Bacteriol 164:823–830
    [Google Scholar]
  30. Meinhardt S. W., Kiley P. J., Kaplan S., Crofts A. R., Harayama S. . 1984; Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from the light-harvesting complexes to the reaction centre. Arch Biochem Biophys 236:130–139
    [Google Scholar]
  31. Michalski W. P., Nicholas D. J. D. 1987; Inhibition of bacteriochlorophyll synthesis in Rhodobacter sphaeroides subsp.denitrificans in light under denitrifying conditions. J Bacteriol 169:4651–4659
    [Google Scholar]
  32. Michalski W. P., Nicholas D. J. D., Whatley F. R. 1985; Effects of nitrate, nitrite and diphenylamine on the photosynthetic apparatus of Rhodopseudomonas sphaeroides f. sp.denitrificans . J Gen Microbiol 131:1951–1961
    [Google Scholar]
  33. Moore M. D., Kaplan S. 1992; Identification of intrinsic high- level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite and rhodium sesquioxide reduction in Rhodobacter sphaeroides . J Bacteriol 174:1505–1514
    [Google Scholar]
  34. Neidle E. L. 1992; Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol 174:6444–6454
    [Google Scholar]
  35. Neidle E. L., Kaplan S. 1993a; 5-Aminolevulinic acid avail-ability and control of spectral complex formation in FlemA and FlemT mutants of Rhodobacter sphaeroides . J Bacteriol 175:2304–2313
    [Google Scholar]
  36. Neidle E. L., Kaplan S. 1993b; Expression of the Rhodobacter sphaeroides hem A and hemT genes, encoding two 5-aminolevulinic acid synthase enzymes. J Bacteriol 175:2292–2303
    [Google Scholar]
  37. Pemberton J. M., Bowen A. R., St G. 1981; High frequency chromosome transfer in Rhodopseudomonas sphaeroides promoted by the broad host range plasmid RP1 carrying the mercury transposon Tn501 . J Bacteriol 161:469–472
    [Google Scholar]
  38. Penfold R. J., Pemberton J. M. 1991; A gene from the photosynthetic gene cluster of Rhodobacter sphaeroides induces trans suppression of bacteriochlorophyll and carotenoid levels in R.sphaeroides and R. capsulatus . Curr Microbiol 23:259–263
    [Google Scholar]
  39. Penfold R. J., Pemberton J. M. 1994; Sequencing, chromo-somal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides . J Bacteriol 176:2869–2876
    [Google Scholar]
  40. Richardson D. J., Bell L. C., McEwan A. G., Jackson J. B., Ferguson S. J. 1991; Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor in vitro . Eur J Biochem 199:677–683
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Eaboratorj Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  42. Sganga M. W., Bauer C. E. 1992; Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus . Cell 68:945–954
    [Google Scholar]
  43. Shemin D. 1972; δ-Aminolevulinic acid dehydratase. In The Enzymes VII pp. 323–338 Boyer P. D., Bhattacharya SK. Edited by New York: Academic Press;
    [Google Scholar]
  44. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/ Technology 1:784–791
    [Google Scholar]
  45. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bi- cinchoninic acid. Anal Biochem 150:76–85
    [Google Scholar]
  46. Unden G., Trageser M., Duchene A. 1990; Effect of positive redox potentials ( > + 400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli . Mol Microbiol 4:315–319
    [Google Scholar]
  47. Unden G., Becker S., Bongaerts J., Holighaus G., Schirawski J., Six S. 1995; O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol 164:81–90
    [Google Scholar]
  48. Weaver P. F., Wall J. D., Gest H. 1975; Characterization of Rhodopseudomonas capsulata . Arch Microbiol 105:207–216
    [Google Scholar]
  49. Williams J. G., Steiner L. A., Ogden R. G., Simon I., Feher G. . 1983; Primary structure of the M subunit of the reaction center of Khodopseudomonas sphaeroides . Proc Natl Acad Set USA 80:6595–6609
    [Google Scholar]
  50. Williams J. C., Steiner L. A., Feher G., Simon M. I. 1984; Primary structure of the L subunit of the reaction center of Khodopseudomonas sphaeroides . Proc Natl Acad Sci USA 81:7303–7308
    [Google Scholar]
  51. Wu Y. Q., MacGregor B. J., Donohue T. J., Kaplan S., Yen B. 1991; Genetic and physical mapping of the Khodobacter sphaeroides photosynthetic gene cluster from R-prime pWS2. Plasmid 25:163–176
    [Google Scholar]
  52. Zeilstra-Ryalls J., Kaplan S. 1995a; Aerobic and anaerobic regulation in Khodobacter sphaeroides 2.4.1: the role of the fnrU gene. J Bacteriol 177:6422–6431
    [Google Scholar]
  53. Zeilstra-Ryalls J., Kaplan S. 1995b; Regulation of 5- minolevulinic acid synthesis in Khodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy. J Bacteriol 177:2760–2768
    [Google Scholar]
  54. Zeilstra-Ryalls J., Kaplan S. 1996; Control of hem A expression in Khodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J Bacteriol 178:985–993
    [Google Scholar]
  55. Ziegelhoffer E. C., Kiley P. J. 1995; In vitro analysis of a constitutively active mutant form of the Escherichia coli global transcription factor FNR. J Mol Biol 245:351–361
    [Google Scholar]
  56. Zucconi A. 1988; Post-transcriptional regulation by light of the steady state levels of mature B800-850 lightharvesting complexes in Khodobacter capsulatus . J Bacteriol 170:877–882
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-10-2831
Loading
/content/journal/micro/10.1099/13500872-142-10-2831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error