1887

Abstract

Using site-directed mutagenesis the single cysteine residue at position 24 of lactococcin B was replaced by all other possible amino acids. Most of these mutant molecules retained bacteriocin activity, with the exception of those in which cysteine was replaced by a positively charged amino acid. This would seem to be in agreement with the authors’ earlier observation that treatment of the wild-type molecule with HgCI resulted in its inactivation. The factor that causes inactivation of lactococcin B seems to be the introduction of a positive charge at position 24 by HgCI rather than oxidation of this residue, as treatment of the bacteriocin with other oxidative chemicals did not interfere with the ability of lactococcin B to dissipate the membrane potential of sensitive cells. Results are also reported which imply that inactive lactococcin B can still bind to its receptor. It can be replaced by an active bacteriocin molecule, resulting in dissipation of the membrane potential.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-10-2825
1996-10-01
2021-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/10/mic-142-10-2825.html?itemId=/content/journal/micro/10.1099/13500872-142-10-2825&mimeType=html&fmt=ahah

References

  1. Boulnois G. J., Paton J. C., Mitchell T. J., Andrew P. W. 1991; Structure and function of pneumolysin, the multifunctional, thiol- activated toxin of Streptococcus pneumoniae . Mol Microbiol 5:2611–2616
    [Google Scholar]
  2. Chopin A., Chopin M. -C., Moillo-Batt A., Langella P. 1984; Two plasmid-determined restriction and modification systems inStreptococcus lactis . Plasmid 11:260–263
    [Google Scholar]
  3. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135
    [Google Scholar]
  4. De Vuyst L. editor 1993 Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics, and Applications. Barking: Elsevier Applied Science;
    [Google Scholar]
  5. Galvez A., Maqueda M., Martinez-Bueno M., Valdivia E. 1991; Permeation of bacterial cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation in lipid bilayers by peptide antibiotic AS-48. J Bacteriol 173:886–892
    [Google Scholar]
  6. Gao F. H., Abee T., Konings W. N. 1991; The mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome C oxidase proteoliposomes. Appl Environ Microbiol 57:2164–2170
    [Google Scholar]
  7. Hoover D., Steenson L. editors 1993; Bacteriocins of Lactic Acid Bacteria. New York: Academic Press;
    [Google Scholar]
  8. Jung G., Sahl H. -G. editors 1991 Nisin and Novel Lantibiotics. Leiden: ESCOM;
    [Google Scholar]
  9. Klaenhammer T. R. 1988; Bacteriocins of lactic acid bacteria. Biochimie 70:337–349
    [Google Scholar]
  10. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86
    [Google Scholar]
  11. Kordel M., Sahl H. -G. 1986; Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of cationic peptides Pep5 and nisin. FEMS Microbiol Lett 34:139–144
    [Google Scholar]
  12. Kordel M., Benz R., Sahl H. -G. 1988; Mode of action of the staphylococcin-like peptide Pep5: voltage-dependent depolarization of bacterial and artificial membranes. J Bacteriol 170:84–88
    [Google Scholar]
  13. Ming X., Daeschel M. A. 1995; Correlation of cellular phospholipid content with nisin resistance of Listeria monocytogenes Scott A. J Food Prot 58:416–420
    [Google Scholar]
  14. Means G. E., Feeney R. E. editors 1971; Chemical modification of proteins. San Francisco: Holden-Day;
    [Google Scholar]
  15. Nettles C. G., Barefoot S. F. 1993; Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. J Food Prot 56:338–356
    [Google Scholar]
  16. Rottlander E., Trautner T. A. 1970; Genetic and transfection studies with Bacillus subtilisphage SP50. Mol Gen Genet 108:47–60
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  19. Schaller F., Benz R., Sahl H. -G. 1989; The peptide antibiotic subtilin acts by formation of voltage-dependent multi-state pores in bacterial and artificial membranes. Eur J Biochem 182:182–186
    [Google Scholar]
  20. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  21. Van Belkum M. J., Hayema B. J., Geis A., Kok J., Venema G. 1989; Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl Environ Microbiol 55:1187–1191
    [Google Scholar]
  22. Van Belkum M. J., Hayema B. J., Jeeninga R. E., Kok J., Venema G. 1991a; Organization and nucleotide sequence of two lactococcal bacteriocin operons. Appl Environ Microbiol 57:492–498
    [Google Scholar]
  23. Van Belkum M. J., Kok J., Venema G., Holo H., Nes I. F., Konings W. N. , Abee T. 1991b; The bacteriocin lactococcin A specifically increases the permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173:7934–7941
    [Google Scholar]
  24. Van Belkum M. J., Kok J., Venema G. 1992; Cloning, sequencing, and expression inEscherichia coliofIcnB,a third bacteriocin determinant from the lactococal bacteriocin plasmid p9B4-6. Appl Environ Microbiol 58:572–577
    [Google Scholar]
  25. Venema K. 1995 Bacteriocins from lactic acid bacteria: lactococcins from Eac toco ecus lac t is and pediocin PA-1 from Bediococcus acidilactici. PhD thesis, University of Groningen, The Netherlands
    [Google Scholar]
  26. Venema K., Abee T., Haandrikman A. J., Leenhouts K. J., Kok J., Konings W. N., Venema G. 1993; Mode of action of lactococcin B, a thiol-activated bacteriocin fromEactococcus lactis . Appl Environ Microbiol 59:1041–1048
    [Google Scholar]
  27. Venema K., Haverkort R. E., Abee T., Haandrikman A. J., Leenhouts K. J., De Leij L., Venema G., Kok J. 1994; Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol 14:521–532
    [Google Scholar]
  28. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-10-2825
Loading
/content/journal/micro/10.1099/13500872-142-10-2825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error