Using site-directed mutagenesis the single cysteine residue at position 24 of lactococcin B was replaced by all other possible amino acids. Most of these mutant molecules retained bacteriocin activity, with the exception of those in which cysteine was replaced by a positively charged amino acid. This would seem to be in agreement with the authors' earlier observation that treatment of the wild-type molecule with HgCI resulted in its inactivation. The factor that causes inactivation of lactococcin B seems to be the introduction of a positive charge at position 24 by HgCI rather than oxidation of this residue, as treatment of the bacteriocin with other oxidative chemicals did not interfere with the ability of lactococcin B to dissipate the membrane potential of sensitive cells. Results are also reported which imply that inactive lactococcin B can still bind to its receptor. It can be replaced by an active bacteriocin molecule, resulting in dissipation of the membrane potential.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error