1887

Abstract

must colonize the human small intestine to cause diarrhoeal disease. strains N16961 (El Tor, Inaba) and 395 (classical, Ogawa) adhered to the epithelial cell surface and the mucus layer of isolated human small intestinal epithelial cells. They adhered specifically to the mucosa and apical membrane in thin sections of small intestine. No binding to the basolateral membrane of dissected epithelial tissue or to intracellular components of the epithelial cells was observed by either light or indirect immunofluorescence microscopy. Based on these results, a modified ELISA was developed to quantitatively study adherence of to human small intestinal epithelial cells. The assay used homogenized human small intestinal mucosal tissue as the substrate for binding. Treatment of the epithelial cell homogenate with 2-mercaptoethanol to disrupt protein and glycoprotein secondary structure inhibited the binding of strains, suggesting that binding was to specific receptors. Several strains and mutants from both biotypes were tested for adherence in the modified ELISA. Wild-type strains of both biotypes and non-enterotoxigenic strains, which were known to colonize humans, adhered. mutants defective in motility, flagellar structure or chemotaxis, which were known to exhibit reduced colonization in animal models, exhibited decreased adherence. The specificity of the assay and its ability to quantify binding should facilitate identification and the study of adherence factors involved in the colonization of human small intestinal epithelial cells by

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-10-2767
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/10/mic-142-10-2767.html?itemId=/content/journal/micro/10.1099/13500872-142-10-2767&mimeType=html&fmt=ahah

References

  1. Attridge S. R., Rowley D. 1983; The specificity of Vibrio cholerae adherence and the significance of the slime agglutinin as a second mediator of in vitro attachment. J Infect Dis 147:873–881
    [Google Scholar]
  2. Baselski V., Briggs R., Parker C. 1977; Intestinal fluid accumulation induced by oral challenge with Vibrio cholerae toxin in infant mice. Infect Immun 15:704–712
    [Google Scholar]
  3. Blake P. A., Snyder J. D., Barret T. J., McFarland L., Caraway C. T., Feeley J. C., Craig J. P., Lee J. V., Puhr N. D., Feldman R. A. 1980; Cholera -a possible endemic focus in the United States. N Engl J Med 302:305–309
    [Google Scholar]
  4. Boyer H. W., Rouland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472
    [Google Scholar]
  5. Chitnis D. S., Sharma K. D., Kamat R. S. 1982; Role of somatic antigen of Vibrio cholerae in adhesion to intestinal mucosa. J Med Microbiol 5:53–61
    [Google Scholar]
  6. Colwell R. R., Spira W. M. 1992; The ecology of Vibrio cbolerae . In Cholera pp. 106–127 Barua D., Greenough W. B. III Edited by New York:: Plenum Medical Book Company.;
    [Google Scholar]
  7. De S. N., Chatterjee D. N. 1953; An experimental study of the mechanism of action of Vibrio cbolerae on the intestinal mucous membrane. J Pathol Bacteriol 66:559–562
    [Google Scholar]
  8. Finkelstein R. A., Boseman-Finkelstein M., Chang Y., Hase C. C. 1992; Vibrio cbolerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun 60:472–478
    [Google Scholar]
  9. Finn T. M., Reiser J., Germanier R., Cruz S. J. Jr 1987; Cell-associated hemagglutinin-deficient mutant of Vibrio cbolerae . Infect Immun 55:942–946
    [Google Scholar]
  10. Franzon V. F., Barker A., Manning P. A. 1993; Nucleotide sequence and the construction of a mutant in the mannose-fucose-resistant hemagglutinin (MRFRHA) of Vibrio cbolerae O1. Infect Immun 61:3032–3037
    [Google Scholar]
  11. Freter R., Jones G. W. 1983; Models for studying the role of bacterial attachment in virulence and pathogenesis. Rev Infect Dis (Suppl. 4) 5:S647–S658
    [Google Scholar]
  12. Freter R., O̓Brien P. C. M., Macsai M. S. 1981; Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 34:234–240
    [Google Scholar]
  13. Galen J. E., Ketley J. M., Fasano A., Richardson S. H., Wasser-man S. S., Kaper J. B. 1992; Role of Vibrio cbolerae neuraminidase in the function of cholera toxin. Infect Immun 60:406–415
    [Google Scholar]
  14. Gill M. D. 1977; Mechanisms of action of cholera toxin. Adv Cyclic Nucleotide Res 8:85–118
    [Google Scholar]
  15. Guentzel M. N., Berry L. J. 1975; Motility as a virulence factor for Vibrio cbolerae . Infect Immun 11:890–897
    [Google Scholar]
  16. Herrington D. A., Hall R. A., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. 1988; Toxin, toxin-coregulated pili and toxR regulon are essential for Vibrio cbolerae pathogenesis in humans. J Exp Med 168:1487–1492
    [Google Scholar]
  17. Jones G. W., Freter R. 1976; Adhesive properties of Vibrio cbolerae: nature of the interaction with isolated rabbit brush border membranes and human erythrocytes. Infect Immun 14:240–245
    [Google Scholar]
  18. Jones G. W., Abrams G. D., Freter R. 1976; Adhesive properties of Vibrio cbolerae: adhesion to isolated rabbit brush border membranes and hemagglutinating activity. Infect Immun 14:232–239
    [Google Scholar]
  19. Kelley J. T., Parker C. D. 1981; Identification of Vibrio cbolerae outer membrane proteins. J Bacteriol 145:1018–1024
    [Google Scholar]
  20. Levine M. M., Edelman R. E. 1979; Acute diarrheal infections in infants. I. Epidemiology, treatment and immunoprophylaxis. Hosp Pract 14:89–100
    [Google Scholar]
  21. Levine M. M., Black R. E., Clements M. L., Cisneros L., Saah A., Nalin D. R., Gill D. M., Craig J. P., Young C. R., Ristaino P. 1982; The pathogenicity of nonenterotoxigenic Vibrio cbolerae serogroup O1 biotype El Tor isolated from sewage water in Brazil. J Infect Dis 145:296–299
    [Google Scholar]
  22. Levine M. M., Kaper J. B., Black R.E.8tClements. 1983; New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol Rev 47:510–550
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics pp. 432–433 Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  24. Murray N. E., Brammar W. J., Murray K. 1977; Lambdoid phages that simplify recovery of in vitro recombinants. Mol Gen Genet 150:53–61
    [Google Scholar]
  25. Parker C., Romig W. R. 1972; Self transfer and genetic recombination mediated by P, the sex factor of Vibrio cbolerae . J Bacteriol 112:707–714
    [Google Scholar]
  26. Richardson K. 1991; Roles of motility and flagellar structure in pathogenicity of Vibrio cbolerae: analysis of motility mutants in three animal models. Infect Immun 59:2727–2736
    [Google Scholar]
  27. Richardson S. H. 1994; Animal models in cholera research. In Vibrio cbolerae and Cholera: Molecular to Global Perspectives pp. 203–226 Wachsmuth I. K., Blake P. A., Olsvik Ø. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  28. Richardson K., Nixon L., Mostow P., Kaper J. B., Michalski J. 1990; Transposon-induced non-motile mutants of Vibrio cbolerae . J Gen Microbiol 136:717–725
    [Google Scholar]
  29. Sack R. B. 1992; Colonization and pathology. In Cholera pp. 189–197 Barua D., Greenough W. B. III Edited by New York:: Plenum Medical Book Company.;
    [Google Scholar]
  30. Sears S. D., Richardson K., Young C., Parker C. D., Levine M. 1984; Evaluation of the human immune response to outer membrane protein of Vibrio cbolerae . Infect Immun 44:339–344
    [Google Scholar]
  31. Sellers L. A., Allen A., Morris E. R., Ross-Murphy S. B. 1988; Mucus glycoprotein gels, role of glycoprotein polymeric structure and carbohydrate side-chains in gel-formation. Carbohydr Res 178:93–110
    [Google Scholar]
  32. Singh S. N., Srivastava R., Sinha V. B., Srivastava B. S. 1994; A 53 kDa protein of Vibrio cbolerae classical strain 0395 involved in intestinal colonization. Microb Pathog 17:69–78
    [Google Scholar]
  33. Sperandio V., Giron J. A., Silveira W. D., Kaper J. B. 1995; The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae . Infect Immun 63:4433–4438
    [Google Scholar]
  34. Spira W. M., Sack R. B., Froehlich J. L. 1981; Simple adult rabbit model for Vibrio cbolerae and enterotoxigenic Escherichia colidiarrhea. Infect Immun 32:739–747
    [Google Scholar]
  35. Srivastava R., Shinha V. B., Srivastava B. S. 1980; Events in the pathogenesis of experimental cholera: role of bacterial adherence and multiplication. J Med Microbiol 13:1–9
    [Google Scholar]
  36. Sun D., Mekalanos J. J., Taylor R. K. 1990; Antibodies directed against the toxin-coregulated pilus isolated from Vibrio cboleraeprovide protection in the infant mouse experimental cholera model. J Infect Dis 161:1232–1236
    [Google Scholar]
  37. Teppema J. S., Guinee P. A. M., Ibrahim A. A., Paques M., Ruitenberg E. J. 1987; In vivo adherence and colonization of Vibrio cbolerae strains that differ in hemagglutinin activity and motility. Infect Immun 55:2093–2102
    [Google Scholar]
  38. Yamamoto T., Yokota T. 1988; Electron microscopic study of Vibrio cbolerae O1 adherence to the mucus coat and villi surface in the human small intestine. Infect Immun 56:2753–2759
    [Google Scholar]
  39. Yang G. C. H., Schrank G. D., Freeman B. A. 1977; Purification of flagellar cores of Vibrio cholerae . J Bacteriol 129:1121–1128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-10-2767
Loading
/content/journal/micro/10.1099/13500872-142-10-2767
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error