1887
Preview this article:
Zoom in
Zoomout

Computerized genetic map of , Page 1 of 1

| /docserver/preview/fulltext/micro/142/10/mic-142-10-2669-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-10-2669
1996-10-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/10/mic-142-10-2669.html?itemId=/content/journal/micro/10.1099/13500872-142-10-2669&mimeType=html&fmt=ahah

References

  1. Abhayawardhane Y. K., Stewart G. C. 1995; Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J Bacteriol 177:765–773
    [Google Scholar]
  2. Adams A., Oishi M. 1972; Genetic properties of arsenate sensitive mutants of Bacillus subtilis 168. Mol Gen Genet 118:295–310
    [Google Scholar]
  3. Adams A. 1973; Transposition of the arsenate resistance locus of Bacillus subtilis . Genetics 74:197–213
    [Google Scholar]
  4. Adams R., Schumann W. 1993; Cloning and mapping of the Bacillus subtilis locus homologous to Escherichia coli ent genes. Gene 133:119–121
    [Google Scholar]
  5. Ahmed M., Borsch C. M., Taylor S. S., Vazquez-Laslop N., Neyfakh A. A. 1994; A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J Biol Chem 269:28506–28513
    [Google Scholar]
  6. Ahmed M., Lyass L., Markham P. N., Taylor S. S., Vazquez-Laslop N., Neyfakh A. A. 1995; Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J Bacteriol 177:3904–3910
    [Google Scholar]
  7. Ahn K. S., Wake R. G. 1991; Variations and coding features of the sequence spanning the replication terminus of Bacillus subtilis 168 and W23 chromosomes. Gene 98:107–112
    [Google Scholar]
  8. Akagawa E., Kurita K., Sugawara T., Nakamura K., Kasa-hara Y., Ogasawara N., Yamane K. 1995; Determination of 17 484 bp nucleotide sequence around the 39° region of the Bacillus subtilis chromosome and similarity analysis of the products of putative ORFs. Microbiology 141:3241–3245
    [Google Scholar]
  9. Akrigg A., Mandelstam J. 1978; Extracellular manganese stimulated deoxyribonuclease as a marker event in sporulation of Bacillus subtilis . Biochem J 172:63–67
    [Google Scholar]
  10. Albano M., Breitling R., Dubnau D. A. 1989; Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bacteriol 171:5386–5404
    [Google Scholar]
  11. Albertini A. M., Galizzi A. 1975; Mutant of Bacillus subtilis with a temperature-sensitive lesion in ribonucleic acid synthesis during germination. J Bacteriol 124:14–25
    [Google Scholar]
  12. Albertini A. M., Galizzi A. 1982; Pattern of RNA transcription during Bacillus subtilis spore outgrowth. J Gen Microbiol 128:247–253
    [Google Scholar]
  13. Albertini A. M., Caramori T., Henner D., Ferrari E., Galizzi A. 1987; Nucleotide sequence of the outB locus of Bacillus subtilis and regulation of its expression. J Bacteriol 169:1480–1484
    [Google Scholar]
  14. Albertini A. M., Caramori T., Crabb W. D., Scoffone F., Galizzi A. 1991; The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions and an ATPase-like polypeptide. J Bacteriol 173:3573–3579
    [Google Scholar]
  15. Albertini A. M., Caramori T., Scoffone F., Scotti C. 1995; Sequence around the 159° region of the Bacillus subtilis genome: thepksX locus spans 33·6 kb. Microbiology 141:299–309
    [Google Scholar]
  16. Alonso J. C., Stiege C. A., Tailor R.H., Viret J.F. 1988; Functional analysis of the dna(Ts) mutants of Bacillus subtilis: plasmid pUBllO replication as a model system. Mol Gen Genet 214:482–489
    [Google Scholar]
  17. Alonso J.G, Tailor R. H., Luder G. 1988; Characterization of recombination-deficient mutants of Bacillus subtilis . J Bacteriol 170:3001–3007
    [Google Scholar]
  18. Alonso J. C., Shirahige K. 1990; Molecular cloning, genetic characterization and DNA sequence analysis of the recM region of Bacillus subtilis . Nucleic Acids Res 18:6771–6777
    [Google Scholar]
  19. Alonso J. C., Stiege C. A., Dobrinski B., Lurz R. 1993; Purification and properties of the RecR protein from Bacillus subtilis 168. J Biol Chem 268:1424–1429
    [Google Scholar]
  20. Amano H., Ives C. L., Bott K. F., Shishido K. 1991; A limited number of Bacillus subtilis strains carry a tetracycline- resistance determinant at a site close to the origin of replication. Biochim Biophys Acta 1088:251–258
    [Google Scholar]
  21. Amjad M., Castro J. M., Sandoval H., Wu J. -J., Yang M., Henner D. J., Piggot P. J. 1990; An Sfii restriction map of the Bacillus subtilis 168 genome. Gene 101:15–21
    [Google Scholar]
  22. Anagnostopoulos C., Schneider-Champagne A. M. 1966; Determinisme genetique de l’exigence en thymine chez certains mutants de Bacillus subtilis . C R Acad Sci Ser D 262:1311–1314
    [Google Scholar]
  23. Anagnostopoulos C., Piggot P. J., Hoch J. A. 1993; The genetic map of Bacillus subtilis . In Bacillus subtilis and Other Gram¬positive Bacteria pp 425–461 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Anagnostopoulos C. Unpublished data
  25. Anderson J. J., Ganesan A. T. 1975; Temperature-sensitive deoxyribonucleic acid replication in a dnaC mutant of Bacillus subtilis . J Bacteriol 121:173–183
    [Google Scholar]
  26. Anderson L. M., Henkin T. M., Chambliss G. H., Bott K.F. 1984; New chloramphenicol resistance locus in Bacillus subtilis . J Bacteriol 158:386–388
    [Google Scholar]
  27. Antelmann H., Bernhardt J., Schmid R., Hecker M. 1995; A gene at 333° on the Bacillus subtilis chromosome encodes the newly identified σB-dependent general stress protein GspA. J Bacteriol 177:3540–3545
    [Google Scholar]
  28. Antoniewski C., Savelli B., Stragier p. 1990; The spoilJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J Bacteriol 172:86–93
    [Google Scholar]
  29. Armpriester J. M. 1991; Direct submission to EMBL/ GenBank/DDBJ - M58606.
    [Google Scholar]
  30. Aronson A. I., Song H. -Y., Bourne N. 1989; Gene structure and precursor processing of a novel Bacillus subtilis spore coat protein. Mol Microbiol 3:437–444
    [Google Scholar]
  31. Awade A., Cleuziat P., Gonzales T., Robert-Baudouy J. 1992; Characterization of the pep gene encoding the pyrroli- done carboxyl peptidase of Bacillus subtilis . FEBS Lett 305:67–73
    [Google Scholar]
  32. Aymerich S., Steinmetz M. 1987; Cloning and preliminary characterization of the sacS locus from Bacillus subtilis which controls the regulation of the exoenzyme levansucrase. Mol Gen Genet 208:114–120
    [Google Scholar]
  33. Babitzke P., Gollnick P., Yanofsky C. 1992; The mtrAB operon of Bacillus subtilis encodes GTP cyclohydrolase I (mtrA), an enzyme involved in folic acid biosynthesis, and mtrB, a regulator of tryptophan biosynthesis. J Bacteriol 174:2059–2064
    [Google Scholar]
  34. Baigori M., Grau R., Morbidoni H. R., de Mendoza D. 1991; Isolation and characterization of Bacillus subtilis mutants blocked in the synthesis of pantothenic acid. J Bacteriol 173:4240–4242
    [Google Scholar]
  35. Balassa G., Milhaud P., Raulet E., Silva M. T., Sousa J. C. F. 1979; A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J Gen Microbiol 110:365–379
    [Google Scholar]
  36. Balassa G., Milhaud P., Sousa J.C.F., Silva M. T. 1979; Decadent sporulation mutants of Bacillus subtilis . J Gen Microbiol 110:381–392
    [Google Scholar]
  37. Band L., Shimotsu H., Henner D. J. 1984; Nucleotide sequence of the Bacillus subtilis trpE and trpD genes. Gene 27:55–65
    [Google Scholar]
  38. Banerjee S., Hansen J. N. 1988; Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263:9508–9514
    [Google Scholar]
  39. Barat M., Anagnostopoulos C., Schneider A. -M. 1965; Linkage relationships of genes controlling isoleucine, valine and leucine biosynthesis in Bacillus subtilis . J Bacteriol 90:357–369
    [Google Scholar]
  40. Barberio C. Unpublished data
  41. Baumberg S., Mountain A. 1984; Bacillus subtilis 168 mutants resistant to arginine hydroxamate in the presence of ornithine or citrulline. J Gen Microbiol 130:1247–1252
    [Google Scholar]
  42. Bazzicalupo M., Parisi B., Pirali G., Polsinelli M., Sala F. 1975; Genetic and biochemical characterization of a ribosomal mutant of Bacillus subtilis resistant to sporangiomycin. Antimicrob Agents Ghemother 8:651–656
    [Google Scholar]
  43. Bazzicalupo M., Gallori E., Polsinelli M. 1980; Characterization of 5-fluoroindole and 5-fluorotryptophan resistant mutants in Bacillus subtilis . Microbiologica 3:15–23
    [Google Scholar]
  44. Beall B., Lowe M., Lutkenhaus J. 1988; Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA . J Bacteriol 170:4855–4864
    [Google Scholar]
  45. Beall B., Lutkenhaus J. 1989; Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and temperature sensitivity. J Bacteriol 171:6821–6834
    [Google Scholar]
  46. Beall B. W., Driks A., Losick R., Moran C. P. 1993; Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J Bacteriol 175:1705–1716
    [Google Scholar]
  47. Beall B. W., Moran C. P. 1994; Cloning and characterization of spo VR, a gene from Bacillus subtilis involved in spore cortex formation. J Bacteriol 176:2003–2012
    [Google Scholar]
  48. Beijer L., Nilsson R. P., Holmberg C., Rutberg L. 1993; The glpP and glpF genes of the glycerol regulon in Bacillus subtilis . J Gen Microbiol 139:349–359
    [Google Scholar]
  49. Berek I., Miczak A., Ivanovics G. 1974; Mapping of the ẟ- aminolaevulinic acid dehydrase and porphobilinogen deaminase loci in Bacillus subtilis . Mol Gen Genet 132:233–239
    [Google Scholar]
  50. Binnie C., Lampe M., Losick R. 1986; Gene encoding the 37 species of RNA polymerase sigma factor from Bacillus subtilis . Proc Natl Acad Sci USA 83:5943–5947
    [Google Scholar]
  51. Bischof O. 1995; Direct submission to EMBL/GenBank/ DDBJ - Z47978.
    [Google Scholar]
  52. Bischoff D., Weinreich M. D., Ordal G. W. 1992; Nucleotide sequence of Bacillus subtilis flagellar biosynthetic genes fliP and fliQ and identification of a novel flagellar gene, fliZ . J Bacteriol 174:4017–4025
    [Google Scholar]
  53. Bischoff D. S., Bourret R. B., Kirsch M. L., Ordal G. W. 1993; Purification and characterization of Bacillus subtilis CheY. Biochemistry 32:9256–9261
    [Google Scholar]
  54. Bishoff D. S., Ordal G. W. 1991; Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis. J Biol Chem 266:12301–12305
    [Google Scholar]
  55. Bishoff D. S., Ordal G. W. 1992; Identification and characterization of FliY a novel component of the Bacillus subtilis flagellar switch complex. Mol Microbiol 6:2715–2723
    [Google Scholar]
  56. Bishop P. E., Brown L. R. 1973; Ethidium bromide-resistant mutant of Bacillus subtilis . J Bacteriol 115:1077–1083
    [Google Scholar]
  57. Bohannon D. E., Rosenkrantz M. S., Sonenshein A. L. 1985; Regulation of Bacillus subtilis glutamate synthase genes by the nitrogen source. J Bacteriol 163:957–964
    [Google Scholar]
  58. Bohannon D. E., Sonenshein A. L. 1989; Positive regulation of glutamate biosynthesis in Bacillus subtilis . J Bacteriol 171:4718–4727
    [Google Scholar]
  59. Bohin J. -P., Lubochinsky B. 1982; Alcohol-resistant sporulation mutants of Bacillus subtilis . J Bacteriol 150:944–955
    [Google Scholar]
  60. Bol D. K., Yasbin R. E. 1991; The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis . Gene 109:31–37
    [Google Scholar]
  61. Bolotin A., Khazak V., Stoynova N., Ratmanova K., Yomantas Y., Kozlov Y. 1995; Identical amino acid sequence of the aroA(G) gene products of Bacillus subtilis 168 and B. subtilis Marburg strain. Microbiology 141:2219–2222
    [Google Scholar]
  62. Bolotin A., Sorokin A., Ehrlich S. D. 1996; Mapping of the 150 kb spoIIIC-pheA region of the Bacillus subtilis chromosome by using Long Range PCR and three yeast artificial chromosomes. Microbiology 142: (in press)
    [Google Scholar]
  63. Bookstein C., Edwards C. W., Kapp N. V., Hulett F. M. 1990; The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAIII mutation on total alkaline phosphatase synthesis. J Bacteriol 172:3730–3737
    [Google Scholar]
  64. Boor K. J., Duncan M. L., Price C. W. 1995; Genetic and transcriptional organization of the region encoding the fl subunit of Bacillus subtilis RNA polymerase. J Biol Chem 270:20329–20336
    [Google Scholar]
  65. Borriss R., Porwollik S., Schroeter R. 1996; The 52°-55° segment of the Bacillus subtilis 168 chromosome: a region devoted to purine uptake and metabolism, and containing the genes cotA,gabP and guaA and the pur A gene cluster within a 34960 bp nucleotide sequence. Microbiology 142: (in press)
    [Google Scholar]
  66. Bott K. F., Stewart G. C., Anderson A. G. 1984; Genetic mapping of cloned ribosomal RNA genes. In Genetics and Biotechnology of Bacilli pp 19–34 Ganesan A. T., Hoch J. A. Edited by Orlando, FL: Academic Press;
    [Google Scholar]
  67. Boudreaux D. P., Eisenstadt E., lijima T., Freese E. 1981; Biochemical and genetic characterization of an auxotroph of Bacillus subtilis altered in the acyl-CoA: acyl-carrier protein transacylase. Eur J Biochem 115:175–181
    [Google Scholar]
  68. Bower S., Perkins J., Rogers Yocum R., Serror P., Sorokin A., Rahaim P., Howitt C. L., Prasad N., Ehrlich S. D., Pero J. 1995; Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. J Bacteriol 177:2572–2575
    [Google Scholar]
  69. Boylan S. A., Suh J. W., Thomas S. M., Price C. W. 1989; Gene encoding the α core subunit of Bacillus subtilis RNA polymerase is cotranscribed with the genes for initiation factor 1 and ribosomal proteins B, S13, Sll, and L17. J Bacteriol 171:2553–2562
    [Google Scholar]
  70. Boylan S. A., Thomas M. D., Price C. W. 1991; Genetic method to identify regulons controlled by nonessential elements : isolation of a gene dependent on alternate transcription factor σB of Bacillus subtilis. . J Bacteriol 173:7856–7866
    [Google Scholar]
  71. Boylan S. A., Rutherford A., Thomas S. M., Price C. W. 1992; Activation of Bacillus subtilis transcription factor σB by a regulatory pathway responsive to stationary phase signals. J Bacteriol 174:3695–3706
    [Google Scholar]
  72. Brakhage A. A., Putzer H., Shazand K., Roschenthaler R. J., Grunberg-Manago M. 1989; Bacillus subtilis phenylalanyl- tRNA synthetase genes: cloning and expression in Escherichia coli and B. subtilis . J Bacteriol 171:1228–1232
    [Google Scholar]
  73. Brakhage A. A., Wozny M., Putzer H. 1990; Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie 72:725–734
    [Google Scholar]
  74. Bramucci M. G., Keggins K. M., Lovett P. S. 1977; Bacteriophage PMB12 conversion of the sporulation defect in RNA polymerase mutants of Bacillus subtilis . J Virol 24:194–200
    [Google Scholar]
  75. Bramucci M. Unpublished data
  76. Brandt C., Karamata D. 1987; Thermosensitive Bacillus subtilis mutants which lyse at the non-permissive temperature. J Gen Microbiol 133:1159–1170
    [Google Scholar]
  77. Breton R., Watson D., Yaguchi M., Lapointe J. 1990; Glutamyl-tRNA synthetases of Bacillus subtilis 168T and of Bacillus stearothermophilus . J Biol Chem 265:18248–18255
    [Google Scholar]
  78. Briehl M., Pooley H. M., Karamata D. 1989; Mutants of Bacillus subtilis 168 thermosensitive for growth and wall teichoic acid synthesis. J Gen Microbiol 135:1325–1334
    [Google Scholar]
  79. Bruand C., Ehrlich D. 1995; The Bacillus subtilis dnal gene is part of the dnaB operon. Microbiology 141:1199–1200
    [Google Scholar]
  80. Bruand C., Sorokin A., Serror P., Ehrlich S. D. 1995; Nucleotide sequence of the Bacillus subtilis dnaD gene. Microbiology 141:321–322
    [Google Scholar]
  81. Bryan E. M. 1995; Direct submission to EMBL/GenBank/ DDBJ - U29084.
    [Google Scholar]
  82. Buchanan C. E. 1987; Absence of penicillin-binding protein 4 from an apparently normal strain of Bacillus subtilis . J Bacteriol 169:5301–5303
    [Google Scholar]
  83. Buchanan G. E., Gustafson A. 1991; Mapping of the gene for a major penicillin-binding protein to a genetically conserved region of the Bacillus subtilis chromosome and conservation of the protein among related species of Bacillus . J Bacteriol 173:1807–1809
    [Google Scholar]
  84. Buchanan G. E., Ling M. L. 1992; Isolation and sequence analysis of dacB which encodes a sporulation-specific penicillin binding protein in Bacillus subtilis . J Bacteriol 174:1717–1725
    [Google Scholar]
  85. Bugaichuk U. D., Piggot P. J. 1986; Nucleotide sequence of the Bacillus subtilis developmental gene spo VE . J Gen Microbiol 132:1883–1890
    [Google Scholar]
  86. Bussey L. B., Switzer R. L. 1993; The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyro- phosphate amidotransferase in Escherichia coli . J Bacteriol 175:6348–6353
    [Google Scholar]
  87. Butler P. D., Mandelstam J. 1987; Nucleotide sequence of the sporulation operon, spoIIIE, of Bacillus subtilis . J Gen Microbiol 133:2359–2370
    [Google Scholar]
  88. Butler Y. X., Abhaydwardhane Y., Stewart G. C. 1993; Amplification of the Bacillus subtilis maf gene results in arrested septum formation. J Bacteriol 175:3139–3145
    [Google Scholar]
  89. Buxton R. S. 1976; Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX. J Virol 20:22–28
    [Google Scholar]
  90. Buxton R. S. 1980; Selection of Bacillus subtilis 168 mutants with deletions of PBSX prophage. J Gen Virol 46:427–437
    [Google Scholar]
  91. Buxton R. S., Ward J. B. 1980; Heat-sensitive lysis mutants of Bacillus subtilis 168 blocked at three different stages of peptidoglycan synthesis. J Gen Microbiol 120:283–293
    [Google Scholar]
  92. Callister H., Wake R. G. 1981; Characterization and mapping of temperature-sensitive division initiation mutations of Bacillus subtilis . J Bacteriol 145:1042–1051
    [Google Scholar]
  93. Calogero S., Gardan R., Glaser P., Schweizer J., Rapoport G., Débarbouilié M. 1994; RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. J Bacteriol 176:1234–1241
    [Google Scholar]
  94. Cannon J. G., Bott K. F. 1980; Mutation affecting expression of spectinomycin resistance in Bacillus subtilis . J Bacteriol 141:409–412
    [Google Scholar]
  95. Canosi U., Siccardi A. G., Falaschi A., Mazza G. 1976; Effect of deoxyribonucleic acid replication inhibitors on bacterial recombination. J Bacteriol 126:108–121
    [Google Scholar]
  96. Canosi U., Nolli M., Ferrari E., Marinone R., Mazza G. 1979; Genetic mapping of caffeine resistant and sensitive mutants of B. subtilis . Microbiologica 2:167–172
    [Google Scholar]
  97. Capuano V., Sorokin A., Galleron N., Pujic P., Ehrlich S. D. 1996; Organization of the Bacillus subtilis 168 chromosome between kdg and the attachment site of the SPγ prophage - use of Long Accurate PCR and yeast artificial chromosomes for sequencing. Microbiology 142: (in press)
    [Google Scholar]
  98. Caramori T., Calogero S., Albertini A. M., Galizzi A. 1993; Functional analysis of the outB gene of Bacillus subtilis . J Gen Microbiol 139:31–37
    [Google Scholar]
  99. Carlsson P., Hederstedt L. 1987; Bacillus subtilis citM, the structural gene for dihydrolipoamide transsuccinylase: cloning and expression in Escherichia coli . Gene 61:217–224
    [Google Scholar]
  100. Carlsson P., Hederstedt L. 1989; Genetic charcterization of Bacillus subtilis odhA and odhB, encoding 2-oxoglutarate dehydrogenase and dihydrolipoamide transsuccinylase, respectively. J Bacteriol 171:3667–3672
    [Google Scholar]
  101. Carpenter P. B., Hanlon D. W., Ordal G. W. 1992; flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP- binding protein. Mol Microbiol 6:2705–2713
    [Google Scholar]
  102. Carpenter P. B., Zuberi A. R., Ordal G. W. 1993; Bacillus subtilis flagellar proteins FliP, FliQ, FliR, and FlhB are related to Shigella flexneri virulence factors. Gene 137:243–245
    [Google Scholar]
  103. Carpenter P. B., Ordal G. W. 1993; Bacillus subtilis FlhA: a flagellar protein related to a new family of signal-transducing receptors. Mol Microbiol 7:735–743
    [Google Scholar]
  104. Carrascosa J. L., Garcia J. A., Salas M. 1982; A protein similar to Escherichia coli GroEL is present in Bacillus subtilis. J Mol Biol 148:731–737
    [Google Scholar]
  105. Carrigan C. M., Haarsma J. A., Smith M. T., Wake R. G. Sequence features of the replication terminus of the Bacilhs subtilis chromosome. Ntlcleic Acids Res 15:8501–8509
    [Google Scholar]
  106. Champney W.S., Jensen R. A. 1969; d-Tyrosine as a metabolic inhibitor of Bacillus subtilis . J Bacteriol 98:205–214
    [Google Scholar]
  107. Chaudhry G. R., Halpern Y. S., Saunders C., Vasantha N., Schmidt B. J., Freese E. 1984; Mapping of the glucose dehydrogenase gene in Bacillus subtilis . J Bacteriol 160:607–611
    [Google Scholar]
  108. Chen L., James L. P., Helmann J. D. 1993; Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol 175:5428–5437
    [Google Scholar]
  109. Chen L., Helmann J. D. 1994; The Bacillus subtilis σD-dependent operon encoding the flagellar proteins FliD, FliS, and FliT. J Bacteriol 176:3093–3101
    [Google Scholar]
  110. Chen N. Y., Hu F. M., Paulus H. 1987; Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control regions. J Biol Chem 262:8787–8798
    [Google Scholar]
  111. Chen N. Y., Zhang J. J., Paulus H. 1989; Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J Gen Microbiol 135:2931–2940
    [Google Scholar]
  112. Chen N. -Y., Jiang S. -q., Klein D. A., Paulus H. 1993; Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. J Biol Chem 268:9448–9465
    [Google Scholar]
  113. Cheo D. L., Bayles K. W., Yasbin R. E. 1991; Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis . J Bacteriol 173:1696–1703
    [Google Scholar]
  114. Chow K. C., Wong J. T. 1988; Cloning and nucleotide sequence of the structural gene coding for Bacillus subtilis tryptophanyl-tRNA synthetase. Gene 73:537–543
    [Google Scholar]
  115. Coats J. H., Nester E. W. 1967; Regulation reversal mutation: characterization of end product-activated mutants of Bacillus subtilis . J Biol Chem 242:4948–4955
    [Google Scholar]
  116. Connors M. J., Setlow P. 1985; Cloning of a small, acid- soluble spore protein gene from Bacillus subtilis and de-termination of its complete nucleotide sequence. J Bacteriol 161:333–339
    [Google Scholar]
  117. Connors M. J., Howard B., Hoch J.8, Setlow P. 1986; Determination of the chromosomal location of four Bacillus subtilis genes which code for a family of small acid-soluble spore proteins. J Bacteriol 166:412–416
    [Google Scholar]
  118. Connors M. J., Mason J.M., Setlow P. 1986; Cloning and nucleotide sequencing of genes for three small, acid- soluble proteins from Bacillus subtilis spores. J Bacteriol 166:417–425
    [Google Scholar]
  119. Copeland J. C., Marmur J. 1968; Identification of conserved genetic functions in Bacillus by use of temperature- sensitive mutants. Bacteriol Rev 32:302–312
    [Google Scholar]
  120. Corfe B. M., Moir A., Popham D., Setlow P. 1994; Analysis of the expression and regulation of the gerB spore germination operon of Bacillus subtilis 168. Microbiology 140:3079–3083
    [Google Scholar]
  121. Corfe B. M., Sammons R. L., Smith D. A., Mauël C. 1994; The gerB region of the Bacillus subtilis 168 chromosome encodes a homologue of the gerA spore germination operon. Microbiology 140:471–478
    [Google Scholar]
  122. Cosmina P., Rodriguez F., deFerra F., Grandi G., Perego M., Venema G., van Sinderen D. 1993; Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis . Mol Microbiol 8:821–831
    [Google Scholar]
  123. Craven M. G., Henner D. J., Alessi D., Schauer A. T., Ost K. A., Deutscher M. P., Friedman D. I. 1992; Identification of the rph (RNase PH) gene of Bacillus subtilis: evidence for suppression of cold-sensitive mutations in Escherichia coli . J Bacteriol 174:4727–4735
    [Google Scholar]
  124. Cutting S., Mandelstam J. 1986; The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis . J Gen Microbiol 132:3012–3024
    [Google Scholar]
  125. Cutting S., Zheng L., Losick R. 1991; Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis . J Bacteriol 173:2915–2919
    [Google Scholar]
  126. Cutting S., Roels S., Losick R. 1991; Sporulation operon poIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis . J Mol Biol 221:1237–1256
    [Google Scholar]
  127. D’Souza C., Nakano M. M., Zuber P. 1994; Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis . Proc Natl Acad Sci USA 91:9397–9401
    [Google Scholar]
  128. Dabbs E. R. 1983; A pair of Bacillus subtilis ribosomal protein genes mapping outside the principle ribosomal protein cluster. J Bacteriol 156:966–969
    [Google Scholar]
  129. Dabbs E. R. 1983; Arrangement of loci within the principal cluster of ribosomal protein genes of Bacillus subtilis . Mol Gen Genet 192:124–130
    [Google Scholar]
  130. Dabbs E. R. 1983; Mapping of the genes for Bacillus subtilis ribosomal proteins S6 and S16: comparison of the chromosomal distribution of ribosomal protein genes in this bacterium with the distribution in Escherichia coli . Mol Gen Genet 192:386–390
    [Google Scholar]
  131. Dabbs E. R. 1983; Mapping of the genes for Bacillus subtilis ribosomal proteins S9, Sll and BL27 by means of antibiotic resistant mutants. Mol Gen Genet 191:295–300
    [Google Scholar]
  132. Dabbs E. R. 1984; Order of ribosomal protein genes in the rif cluster of Bacillus subtilis is identical to that of Escherichia coli . J Bacteriol 159:770–772
    [Google Scholar]
  133. Daniel R. A., Prescott A. M., Errington J. 1993; Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis . J Mol Biol 232:468–483
    [Google Scholar]
  134. Daniel R. A., Prescott A. M., Errington J. 1996; A complex four-gene operon containing essential cell division genes ftsL and pbpB in Bacillus subtilis . J Bacteriol 178:2343–2350
    [Google Scholar]
  135. Dartois V., Baulard A., Schanck K., Colson C. 1992; Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim Biophys Acta 1131:253–260
    [Google Scholar]
  136. De Lencastre H. Unpublished data.
  137. De la Fuente V. 1995 Participation au projet de sequencage du genome de Bacillus subtilis 168: sequencage et analyse sTune region chromosomique de 11 Kb. PhD thesis, Université de Poitiers
    [Google Scholar]
  138. Dean D. R., Hoch J. A., Aronson A. I. 1977; Alteration of the Bacillus subtilis glutamine snythetase results in overpro-duction of the enzyme. J Bacteriol 131:981–987
    [Google Scholar]
  139. Deuerling E., Paeslack B., Schumann W. 1995; The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. J Bacteriol 171:4105–4112
    [Google Scholar]
  140. Deutscher J. 1994; Direct submission to EMBL/GenBank/ DDBJ - X79387.
    [Google Scholar]
  141. Deutscher J., Reizer J., Fischer C., Galinier A., Saier M. H., Steinmetz M. 1994; Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis . J Bacteriol 176:3336–3344
    [Google Scholar]
  142. Devine K. M. 1993; Direct submission to EMBL/ GenBank/DDBJ - Z26219.
    [Google Scholar]
  143. Dhaese P. Unpublished data
  144. Dingman D. W., Sonenshein A. L. 1987; Purification of aconitase from Bacillus subtilis and correlation of its N-terminal amino acid sequence with the sequence of the citB gene. J Bacteriol 169:3062–3067
    [Google Scholar]
  145. Dod B., Balassa G., Raulet E., Jeannoda V. 1978; Spore control (Sco) mutations in Bacillus subtilis.II. Sporulation and the production of extracellular proteases and α-amylases by Sco mutants. Mol Gen Genet 163:45–56
    [Google Scholar]
  146. Donovan W., Zheng L., Sandman K., Losick R. 1987; Genes encoding spore coat polypeptides from Bacillus subtilis . J Mol Bioll 96:1–10
    [Google Scholar]
  147. Driks A., Roels S., Beall B., Moran C. P., Losick R. 1994; Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis . Genes Dev 8:234–244
    [Google Scholar]
  148. Driscoll J. R., Taber H. W. 1992; Sequence analysis and regulation of the Bacillus subtilis menBE operon. J Bacteriol 174:5063–5071
    [Google Scholar]
  149. Dubnau D., Goldthwaite C., Smith I., Marmur J. 1967; Genetic mapping in Bacillus subtilis . J Mol Biol 27:163–185
    [Google Scholar]
  150. Dubnau D., Cirigliano C. 1974; Genetic characterization of recombination-deficient mutants of Bacillus subtilis . J Bacteriol 117:488–493
    [Google Scholar]
  151. Dubnau D., Roggiani M. 1990; Growth medium- independent genetic competence mutants of Bacillus subtilis . J Bacteriol 172:4048–4055
    [Google Scholar]
  152. Dubnau D. 1991; Genetic competence in Bacillus subtilis . Microbiol Rev 55:395–424
    [Google Scholar]
  153. Dubnau E., Pifko S., Sloma A., Cabane K., Smith I. 1976; Conditional mutations in the translational apparatus of Bacillus subtilis . Mol Gen Genet 147:1–12
    [Google Scholar]
  154. Dubnau E., Weir J., Nair G., Carter L. III Moran C. P. Jr Smith I. 1988; Bacillus sporulation gene spoOH codes for σ30H). J Bacteriol 170:1054–1062
    [Google Scholar]
  155. Duncan M. L., Kalman S. S., Thomas S. M., Price C. W. Gene encoding the 37,000-dalton minor sigma factor of Bacillas subtilis RNA polymerase : isolation, nucleotide sequence, chromosomal locus, and cryptic function. J Bacteriol 169:771–778
    [Google Scholar]
  156. Débarbouillé M., Arnaud M., Fouet A., Klier A., Rapoport G. 1990; The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional anti terminators. J Bacteriol 172:3966–3973
    [Google Scholar]
  157. Débarbouillé M., Martin-Verstraete I., Kunst F., Rapoport G. 1991; The Bacillus subtilis sigL gene encodes an equivalent of σ54 from gram-negative bacteria. Proc Natl Acad Sci USA 88:9092–9096
    [Google Scholar]
  158. Débarbouillé M., Martin-Verstraete I., Klier A., Rapoport G. 1991; The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ54- and phospho-transferase system-dependent regulators. Proc Natl Acad Sci USA 88:2212–2216
    [Google Scholar]
  159. Ebbole D. J., Zalkin H. 1987; Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem 262:8274–8287
    [Google Scholar]
  160. Endo T., Uratani B., Freese E. 1983; Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants. J Bacteriol 155:169–179
    [Google Scholar]
  161. Endo T., Ishikawa H., Freese E. 1983; Properties of a Bacillus subtilis mutant able to sporulate continually during growth in synthetic medium. J Gen Microbiol 129:17–30
    [Google Scholar]
  162. Engelmann S., Lindner G., Hecker M. 1995; Cloning, nucleotide sequence, and regulation of katE encoding a σB- dependent catalase in Bacillus subtilis . J Bacteriol 177:5598–5605
    [Google Scholar]
  163. Errington J., Fort P., Mandelstam J. 1985; Duplicated sporulation genes in bacteria: implications for simple de-velopmental systems. FEBS Lett 188:184–188
    [Google Scholar]
  164. Errington J., Jones D. 1987; Cloning in Bacillus subtilis by transfection with bacteriophage vector ɸ105J27: isolation and preliminary characterization of transducing phages for 23 sporulation loci. J Gen Microbiol 133:493–502
    [Google Scholar]
  165. Errington J., Rong S., Rosenkrantz M. S., Sonenshein A. L. 1988; Transcriptional regulation and structure of the Bacillus subtilis sporulation locus spoIIIG . J Bacteriol 170:1162–1167
    [Google Scholar]
  166. Errington J., Vogt C. H. 1990; Isolation and charac-terization of mutations in the gene encoding an endogenous Bacillus subtilis β-galactosidase and its regulator. J Bacteriol 172:488–490
    [Google Scholar]
  167. Errington J., Appleby L., Daniel R., Goodfellow H., Partridge S. R., Yudkin M. D. 1992; Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for σG activity at an intermediate stage of sporulation. J Gen Microbiol 138:2609–2618
    [Google Scholar]
  168. Errington J. 1993; Sporulation in Bacillus subtilis-regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33
    [Google Scholar]
  169. Estrela A. I., de Lencastre H., Archer L. J. 1986; Resistance of a Bacillus subtilis mutant to a group of temperate bacteriophages. J Gen Microbiol 132:411–415
    [Google Scholar]
  170. Estrela A. -I., Pooley H. M., de Lencastre H., Karamata D. Genetic and biochemical characterization in Bacillns subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid poly(3-O-β-d-glucopyranosyl-N-acetylgalactosamine 1-phosphate): gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. J Gen Microbiol l37:943–950
    [Google Scholar]
  171. Fajardo-Cavazos P., Salazar C., Nicholson W. L. 1992; Molecular cloning and characterization of spl, the gene encoding spore photoproduct lyase, which is involved in repair of ultraviolet radiation-induced DNA damage in Bacillus subtilis spores. XI International Spores Conference (Spores XI) abstract no. 133
    [Google Scholar]
  172. Fajardo-Cavazos P., Salazar C., Nicholson W. L. 1993; Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in repair of UV radiation-induced DNA damage during spore germination. J Bacteriol 175:1735–1744
    [Google Scholar]
  173. Fan N., Cutting S., Losick R. 1992; Characterization of the Bacillus subtilis sporulation genespoVK . J Bacteriol 174:1053–1056
    [Google Scholar]
  174. Fani R., Mastromei G., Polsinelli M. 1984; Isolation and characterization of Bacillus subtilis mutants altered in com-petence. J Bacteriol 157:152–157
    [Google Scholar]
  175. Feavers I. M., Miles J. S., Moir A. 1985; The nucleotide sequence of a spore germination gene (gerA) of Bacillus subtilis 168. Gene 38:95–102
    [Google Scholar]
  176. Fein J. E., Rogers R. 1976; Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J Bacteriol 127:1427–1442
    [Google Scholar]
  177. Ferrari E., Henner D. J., Yang M. 1985; Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. . Bio/Technology 3:1003–1007
    [Google Scholar]
  178. Ferrari E., Scoffone F., Ciarrocchi G., Galizzi A. 1985; Molecular cloning of a Bacillus subtilis gene involved in spore outgrowth. J Gen Microbiol 131:2831–2838
    [Google Scholar]
  179. Ferrari E. Unpublished data
  180. Ferrari F. A., Lang D., Ferrari E., Hoch J. A. 1982; Molecular cloning of the spoOB sporulation locus in bacteriophage lambda. J Bacteriol 152:809–814
    [Google Scholar]
  181. Ferrari F. A., Trach K., Hoch J. A. 1985; Sequence analysis of the spoOB locus reveals a polycistronic transcription unit. J Bacteriol 161:556–562
    [Google Scholar]
  182. Ferrari F. A., Trach K., LeCoq D., Spence J., Ferrari E., Hoch J. A. 1985; Characterization of the spoOA locus and its deduced product. Proc Natl Acad Sci USA 82:2647–2651
    [Google Scholar]
  183. Fischer C., Geourjon C., Bourson C., Deutscher J. 1996; Cloning and characterization of the Bacillus subtilis prkA gene encoding a novel serine protein kinase. Gene 168:55–60
    [Google Scholar]
  184. Fisher S. H., Rosenkrantz M. S., Sonenshein A. L. 1984; Glutamine synthetase gene of Bacillus subtilis . Gene 32:427–438
    [Google Scholar]
  185. Fort P., Piggot P. J. 1984; Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis . J Gen Microbiol 130:2147–2153
    [Google Scholar]
  186. Fort P., Errington J. 1985; Nucleotide sequence and complementation analysis of a polycistronic sporulation operon, spoVA in Bacillus subtilis . J Gen Microbiol 131:1091–1105
    [Google Scholar]
  187. Foster S. J. 1991; Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2 . J Gen Microbiol 137:1987–1998
    [Google Scholar]
  188. Foster S. J. 1993; Molecular analysis of three major wall- associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor, two-domain ligand-binding protein. Mol Microbiol 8:299–310
    [Google Scholar]
  189. Fouet A., Klier A., Rapoport G. 1986; Nucleotide sequence of the sucrase gene of Bacillus subtilis . Gene 45:221–225
    [Google Scholar]
  190. Fouet A., Arnaud M., Klier A., Rapoport G. 1987; Bacillus subtilis sucrose-specific enzyme II of the phospho-transferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci USA 84:8773–8777
    [Google Scholar]
  191. Foulger D., Errington J. 1989; The role of the sporulation gene spoIIIE in the regulation of prespore-specific gene expression in Bacillus subtilis . Mol Microbiol 3:1247–1255
    [Google Scholar]
  192. Foulger D., Errington J. 1991; Sequential activation of dual promoters by different sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis . Mol Microbiol 5:1363–1373
    [Google Scholar]
  193. Foulger D., Errington J. Unpublished data
  194. Frandsen N., Stragier P. 1995; Identification and charac-terization of the Bacillus subtilis spollP locus. J Bacteriol 177:716–722
    [Google Scholar]
  195. Fredrick K. L., Helmann J. D. 1994; Dual chemotaxis signaling pathways in Bacillus subtilis: a σD-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 176:2727–2735
    [Google Scholar]
  196. Freese E. B., Cole R. M., Klofat W., Freese E. 1970; Growth, sporulation, and enzyme defects of glucosamine mutants of Bacillus subtilis . J Bacteriol 101:1046–1062
    [Google Scholar]
  197. Freese E. Unpublished data
  198. Fuhrer D. K., Ordal G. W. 1991; Bacillus subtilis cheN, a homolog of cheA, the central regulator of chemotaxis in Escherichia coli . J Bacteriol 173:7443–7448
    [Google Scholar]
  199. Fujishima Y., Yamane K. 1995; A 10 kb nucleotide sequence at the 5′ flanking region (32°) of srfAA of the Bacillus subtilis chromosome. Microbiology 141:277–279
    [Google Scholar]
  200. Fujita Y., Fujita T. 1983; Genetic analysis of a pleiotropic deletion mutation (Δigf) in Bacillus subtilis . J Bacteriol 154:864–869
    [Google Scholar]
  201. Fujita Y., Fujita T., Miwa Y., Nihashi J., Aratani Y. Organization and transcription of the gluconate operon, gnt, of Bacillus stlbtilis. J Biol Chem 261:13744–13753
    [Google Scholar]
  202. Fujita Y., Fujita T. 1987; The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc Natl Acad Sci USA 84:4524–4528
    [Google Scholar]
  203. Fujita Y., Shindo K., Miwa Y., Yoshida K. 1991; Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli . Gene 108:121–125
    [Google Scholar]
  204. Fuma S., Fujishima Y., Corbell N., D’Souza C., Nakano N. M., Zuber P., Yamane K. 1993; Nucleotide sequence of 5′ portion of srJA that contains the region required for competence establishment in Bacillus subtilis . Nucleic Acids Res 21:93–97
    [Google Scholar]
  205. Gagnon Y., Breton R., Putzer H., Pelchat M., Grunberg-Manago M., Lapointe J. 1994; Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J Biol Chem 269:7473–7482
    [Google Scholar]
  206. Gaido M. L., Prostko C. R., Strobl J. S. 1988; Isolation and characterization of BsuE methyltransferase, a CGCG- specific DNA methyltransferase from Bacillus subtilis . J Biol Chem 263:4832–4836
    [Google Scholar]
  207. Galizzi A., Gorrini F., Rollier A., Polsinelli M. 1973; Mutants of Bacillus subtilis temperature sensitive in the outgrowth phase of spore germination. J Bacteriol 113:1482–1490
    [Google Scholar]
  208. Galizzi A. Unpublished data
  209. Gallon E., Bazzicalupo M., Parisi B., Pedaggi G., Polsinelli M. 1978; Resistance to (L)-azetidine-2-carboxylic acid in Bacillus subtilis . Biochem Biophys Res Commun 85:1518–1525
    [Google Scholar]
  210. Gallori E., Fani R. 1983; Characterization of d-cycloserine resistant mutants in Bacillus subtilis . Microbiologica 6:19–26
    [Google Scholar]
  211. Gardan R., Rapoport G., Débarbouillé M. 1995; Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis . J Mol Biol 249:843–885
    [Google Scholar]
  212. Garrity D. B., Zahler S. A. 1993; The Bacillus subtilis ochre suppressor sup-3 is located in an operon of seven tRNA genes. J Bacteriol 175:6512–6517
    [Google Scholar]
  213. Garro A. J., Leffert H., Marmur J. 1970; Genetic mapping of a defective bacteriophage on the chromosome of Bacillus subtilis 168. J Virol 6:340–343
    [Google Scholar]
  214. Garro A. J., Sprouse G., Wetmur J. G. 1976; Association of the recombination-deficient phenotype of Bacillus subtilis recC strains with the presence of an SP02 prophage. J Bacteriol 126:556–558
    [Google Scholar]
  215. Gass K. B., Cozzarelli N. R. 1973; Further genetic and enzymological characterization of the three Bacillus subtilis deoxyribonucleic acid polymerases. J Biol Chem 248:7688–7700
    [Google Scholar]
  216. Gaur N. K., Cabane K., Smith I. 1988; Structure and expression of the Bacillus subtilis sin operon. J Bacteriol 170:1046–1053
    [Google Scholar]
  217. Gay P., Delobbe A. 1977; Fructose transport in Bacillus subtilis . Eur J Biochem 79:363–373
    [Google Scholar]
  218. Gay P., LeCoq D., Steinmetz M., Ferrari E., Hoch J. A. 1983; Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli . J Bacteriol l53:1424–1431
    [Google Scholar]
  219. Gay P., Chalumeau H., Steinmetz M. 1983; Chromosomal localization of gut, fruC, and pfk mutations affecting genes involved in Bacillus subtilis d-glucitol catabolism. J Bacteriol 153:1133–1137
    [Google Scholar]
  220. Gholamhoseinian A., Shen Z., Wu J. J., Piggot P. J. 1992; Regulation of transcription of the cell division gene ftsA during sporulation of Bacillus szibtilis. J Bacteriol l53:1133–1137
    [Google Scholar]
  221. Gianni M., Galizzi A. 1986; Isolation of genes prefer-entially expressed during Bacillus subtilis spore outgrowth. J Bacteriol 165:123–132
    [Google Scholar]
  222. Gillespie K., Yasbin R. E. 1987; Chromosomal locations of three Bacillus subtilis din genes. J Bacteriol 169:3372–3374
    [Google Scholar]
  223. Ginetti F., Perego M., Albertini A. M., Galizzi A. Unpublished data.
  224. Glaser P., Danchin A., Kunst F., Déarbouillé M., Vertes A., Dedonder R. 1991; A gene encoding a tyrosine tRNA synthetase is located near sacS in Bacillus subtilis . DNA Seq 1:251–261
    [Google Scholar]
  225. Glaser P., Kunst F., Arnaud M., Coudart M. P., Danchin A., Gonzales W., Hullo M. F., lonescu M., Lubochinsky B., Marcelino L., Moszer I., Presecan E., Rapoport G., Santana M., Schneider E., Schweizer J., Vertes A. 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384
    [Google Scholar]
  226. Glaser P., Danchin A., Kunst F., Zuber P., Nakano N. M. 1995; Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis . J Bacteriol Ml 177:1112–1115
    [Google Scholar]
  227. Glaser P. Unpublished data
  228. Glaser P., De La Fuente V., Danchin A. Unpublished data
  229. Goldstein B. J., Zahler S. A. 1976; Uptake of branched- chain α-keto acids in Bacillus subtilis . J Bacteriol 127:667–670
    [Google Scholar]
  230. Goldthwaite C., Dubnau D., Smith I. 1970; Genetic mapping of antibiotic resistance markers in Bacillus subtilis . Proc Natl Acad Sci USA 65:96–103
    [Google Scholar]
  231. Goldthwaite C., Smith I. 1972; Genetic mapping of amino-glycoside and fusidic acid resistant mutations in Bacillus subtilis . Mol Gen Genet 114:181–189
    [Google Scholar]
  232. Gollnick P., Ishino S., Kuroda M. I., Henner D. J., Yanofsky C. 1990; The mtr locus is a two-gene operon required for transcription attenuation in the trp operon of Bacillus subtilis . Proc Natl Acad Sci USA 87:8726–8730
    [Google Scholar]
  233. Gonzy-Tréboul G., Steinmetz M. 1987; Phosphoenol- pyruvate : sugar phosphotransferase system of Bacillus subtilis :cloning of the region containing the ptsH and ptsI genes and evidence for the crr-like gene. J Bacterioll 69: 2287–2290
    [Google Scholar]
  234. Gonzy-Tréboul G., Zagorec M., Rain-Guion M. -C., Steinmetz M. 1989; Phosphoenolpyruvate: sugar phosphotrans-ferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and the 5′-end of ptsI and evidence for a ptsHI operon. Mol Microbiol 3:103–112
    [Google Scholar]
  235. Gonzy-Tréboul G., Karmazyn-Campelli C., Stragier P. 1992; Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. J Mol Biol 224:967–979
    [Google Scholar]
  236. Gotsche S., Dahl M. 1995; Purification and charac-terization of the phospho-α-(l,l)-glucosidase (TreA) of Bacillus subtilis 168. J Bacteriol 177:2721–2726
    [Google Scholar]
  237. Grandoni J. A., Zahler S. A., Calvo J. M. 1992; Trans-criptional regulation of the ilv-leu operon of Bacillus subtilis . J Bacteriol 174:3212–3219
    [Google Scholar]
  238. Gray J. V., Golinelli-Pimpaneau G., Knowles J. R. 1990; Monofunctional chorismate mutase from Bacillus subtilis:purification of the protein, molecular cloning of the gene, and overexpression of the gene product in Escherichia coli. . Biochemistry 29:376–383
    [Google Scholar]
  239. Green C. J., Stewart G. C., Hollis M. A., Void B. S., Bott K. F. 1985; Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrnB . Gene 37:261–266
    [Google Scholar]
  240. Green C. J., Vold B. S. 1992; A cluster of nine tRNA genes between ribosomal gene operons in Bacillus subtilis . J Bacteriol 174:3147–3151
    [Google Scholar]
  241. Green D. M. 1968; Gene dislinkage in transfection of SP82G phage DNA. Genetics 60:673–680
    [Google Scholar]
  242. Gropp M., Eizenman E., Glaser G., Samarrai W., Rudner R. 1994; A relA(S) suppressor mutant allele of Bacillus subtilis which maps to relA and responds only to carbon limitation. Gene 140:91–96
    [Google Scholar]
  243. Grossman T. H., Tuckman M., Ellestad S., Osburne M. S. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis : relationship between B. szibtilis SfpO and Escherichia coli entD genes. J Bacteriol 175:6203–6211
    [Google Scholar]
  244. Grundy F. J., Henkin T. M. 1990; Cloning and analysis of the Bacillus subtilis rpsD gene, encoding ribosomal protein S4. J Bacteriol 172:6372–6379
    [Google Scholar]
  245. Grundy F. J., Waters D. A., Allen S. H., Henkins T. M. 1993; Regulation of the Bacillus subtilis acetate kinase gene by Cep A. J Bacteriol 175:7348–7355
    [Google Scholar]
  246. Grundy F. J., Waters D. A., Takova T. Y., Henkin T. M. 1993; Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis . Mol Microbiol 10:259–271
    [Google Scholar]
  247. Grundy F. J., Turinsky A. J., Henkin T. M. 1994; Catabo- lite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J Bacteriol 176:4527–4533
    [Google Scholar]
  248. Guerout-Fleury A. -M., Stragier P. 1992; Unexpected complexity of the spoIIIA locus. XI International Spores Conference (Spores XI), abstract151
    [Google Scholar]
  249. Guerout-Fleury A. M. 1995; Direct submission to EMBL/ GenBank/DDBJ - U35252.
    [Google Scholar]
  250. Guzman P., Westpheling J., Youngman P. 1988; Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J Bacteriol 170:1598–1609
    [Google Scholar]
  251. Hackett R. H., Setlow P. 1987; Cloning, nucleotide sequencing, and genetic mapping of the gene for small, acid- soluble spore protein γ of Bacillus subtilis . J Bacteriol 169:1985–1992
    [Google Scholar]
  252. Hahn J., Inamine G., Kozlov Y., Dubnau D. 1993; Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol Microbiol 10:99–111
    [Google Scholar]
  253. Haijema B. J., Hamoen L. W., Kooistra J., Venema G., van Sinderen D. 1995; Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence- mediated control. Mol Microbiol 15:203–211
    [Google Scholar]
  254. Haldenwang W. G., Banner C. D. B., Ollington J. F., Losick R., Hoch J. A., O’Connor M. B., Sonenshein A. L. 1980; Mapping a cloned gene under sporulation control by insertion of a drug resistance marker into the Bacillus subtilis chromosome. J Bacteriol 142:90–98
    [Google Scholar]
  255. Hailing S. M., Burtis K. C. 1977; Reconstitution studies show that rifampicin resistance is determined by the largest polypeptide of Bacillus subtilis RNA polymerase. J Biol Chem 252:9024–9031
    [Google Scholar]
  256. Hailing S. M., Burtis K. C., Doi R. H. 1978; β subunit of bacterial RNA polymerase is responsible for streptolydigin resistance in Bacillus subtilis. . Nature 272:837–839
    [Google Scholar]
  257. Hammer-Jespersen K. 1983; Nucleoside catabolism. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms pp. 203–258 Munch-Petersen A. Edited by New York: Academic Press;
    [Google Scholar]
  258. Hammond R. A., Barnes M. H., Mack S. L., Mitchener J. A., Brown N. C. 1991; Bacillus subtilis DNA polymerase III: complete sequence, overexpression, and characterization of the polC gene. Gene 98:29–36
    [Google Scholar]
  259. Hamoen L. W., Eshuis H., Jongbloed J., Venema G., van Sinderen D. 1995; A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis . Mol Microbiol 15:55–63
    [Google Scholar]
  260. Hanlon D. W., Marquez-Magana L. M., Carpenter P. B., Chamberlin M. J., Ordal G. W. 1992; Sequence and characterization of Bacillus subtilis CheW. J Biol Chem 267:12055–12060
    [Google Scholar]
  261. Hanlon D. W., Ordal G. W. 1994; Cloning and charac-terization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis . J Biol Chem 269:14038–14046
    [Google Scholar]
  262. Hanlon D., Rosario M. M. L., Ordal G. W., Venema G., Van Sinderen D. 1994; Identification of TlpC, a novel 62 kDa MCP-like protein from Bacillus subtilis . Microbiology 140:1847–1854
    [Google Scholar]
  263. Hansson M., Rutberg L., Schroder I., Hederstedt L. 1991; The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol l73:2590–2599
    [Google Scholar]
  264. Hansson M., Hederstedt L. 1992; Cloning and charac-terization of the Bacillus subtilis hemEHY operon which encodes protoheme IX biosynthesis enzymes. J Bacteriol 174:8081–8093
    [Google Scholar]
  265. Hantke K., Schneider R. 1993; Iron-hydroxamate uptake systems in Bacillus subtilis:identification of a lipoprotein as part of a binding protein-dependent transport system. Mol Microbiol 8:111–121
    [Google Scholar]
  266. Hara H., Yoshikawa H. 1973; Asymmetric bidirectional replication of Bacillus subtilis chromosome. Nature 244:200–203
    [Google Scholar]
  267. Harford N., Sueoka N. 1970; Chromosomal location of antibiotic resistance markers in Bacillus subtilis. . J Mol Biol 51:267–286
    [Google Scholar]
  268. Harford N., Lepesant-Kejzlarova J., Lepesant J. -A., Hamers R., Dedonder R. 1976; Genetic circularity and mapping of the replication origin region of the Bacillus subtilis chromosome. In Microbiology 1976 pp. 28–34 Schlessinger D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  269. Harry E. J., Wake R. G. 1989; Cloning and expression of a Bacillus subtilis division initiation gene for which a homolog has not been identified in another organism. J Bacteriol 171:6835–6839
    [Google Scholar]
  270. Harry E. J., Rowland S. L., Malo M. S., Wake R. G. 1994; Expression of divIB of Bacillus subtilis during vegetative growth. J Bacteriol 176:1172–1179
    [Google Scholar]
  271. Hastrup S. 1988; Analysis of the Bacillus subtilis xylose regulon. In Genetics and Biotechnology of Bacilli 2 Ganesan A. T., Hoch J. A. Edited by San Diego, CA: Academic Press;
    [Google Scholar]
  272. Hauser P. M., Crabb W. D., Fioria M. G., Scoffone F., Galizzi A. 1991; A genetic analysis of the flaA locus of Bacillus subtilis . J Bacteriol 173:3580–3583
    [Google Scholar]
  273. Hearne C. M., Ellar D. J. 1989; Nucleotide sequence of a Bacillus subtilis gene homologous to the dnaK gene of Escherichia coli . Nucleic Acids Res 17: 8373
    [Google Scholar]
  274. Hediger M. A., Frank G., Zuber H. 1986; Structure and function of l-lactate dehydrogenases from thermophilic and mesophilic bacteria.IV. The primary structure of the meso- philic lactate dehydrogenase from Bacillus subtilis . Biol Chem Hoppe-Seyler 367:891–903
    [Google Scholar]
  275. Helfert C., Gotsche S., Dahl M. K. 1995; Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-α-(l-l)-glucosidase encoded by the treA gene. Mol Microbiol 16:111–120
    [Google Scholar]
  276. Helmann J. D., Marquez L. M., Chamberlin M. J. 1988; Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene. J Bacteriol 170:1568–1574
    [Google Scholar]
  277. Hemila H., Palva A., Paulin L., Arvidson S., Palva I. 1990; Secretory S complex of Bacillus subtilis:. sequence analysis and identity to pyruvate dehydrogenase. J Bacteriol 172:5052–5063
    [Google Scholar]
  278. Hemila H. 1991; Sequence of a PAL-related lipoprotein from Bacillus subtilis . FEMS Microbiol Eett 82:37–42
    [Google Scholar]
  279. Hemila H., Koivula T., Paulin L. Unpublished data.
    [Google Scholar]
  280. Hemphill E. H., Gage I., Zahler S. A., Korman R. Z. 1980; Prophage mediated production of bacteriocin-like substance by SPβlysogens of Bacillus subtilis . Can J Microbiol 26:1328–1333
    [Google Scholar]
  281. Henkin T. M., Campbell K. M., Chambliss G. H. 1979; Spectinomycin dependence in Bacillus subtilis . J Bacteriol 137:1452–1455
    [Google Scholar]
  282. Henkin T. M., Chambliss G. H. 1984; Genetic analysis of a streptomycin-resistant oligosporogenous Bacillus subtilis . J Bacteriol 157:202–210
    [Google Scholar]
  283. Henkin T. M., Moon S. H., Mattheakis L. C., Nomura M. 1989; Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis: comparison with the spc operon of Escherichia coli . Nucleic Acids Res 17:7469–7486
    [Google Scholar]
  284. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. 1991; Catabolite repression of α-amylase gene ex pression in Bacillus subtilis involves a trans-ncting gene product homologous to the Escherichia coli laI and galR repressors. Mol Microbiol 5:575–584
    [Google Scholar]
  285. Henkin T. M., Glass B. L., Grundy F. J. 1992; Analysis of the Bacillus subtilis tyrS gene: conservation of regulatory sequence in multiple tRNA synthetase genes. J Bacteriol 174:1299–1306
    [Google Scholar]
  286. Henner D. J., Steinberg W. 1979; Genetic location of the Bacillus subtilis sup-3 suppressor mutation. J Bacteriol 139:668–670
    [Google Scholar]
  287. Henner D. J., Hoch J. A. 1980; The Bacillus subtilis chromosome. Microbiol Rev 44:57–82
    [Google Scholar]
  288. Henner D. J., Hoch J. A. 1982; The genetic map of Bacillus subtilis . In The Molecular Biology of the Bacilli pp. 1–33 Dubnau D. Edited by New York: Academic Press;
    [Google Scholar]
  289. Henner D. J., Band L., Shimotsu H. 1984; Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene 34:169–177
    [Google Scholar]
  290. Henner D. J., Band L., Flaggs G., Chen E. 1986; The organization and nucleotide sequence of the Bacillus subtilis bisH, tyrA, and aroE genes. Gene 49:147–152
    [Google Scholar]
  291. Henner D. J., Yang M., Ferrari E. 1988; Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J Bacteriol 170:5102–5109
    [Google Scholar]
  292. Henner D. J., Gollnick P., Moir A. 1990; Analysis of an 18 kilobase pair region of the Bacillus subtilis chromosome containing the mtr and gerC operons and the aro-trp-aro supraoperon. In Proceedings of the 6th International Symposium on Genetics of Industrial Microorganisms 2: pp. 657–665 Heslot H., Davies J., Florent J., Bohichou L., Durand G., Penaasse L. Edited by Strasbourg: Societie Francaise de Micro-biologie;
    [Google Scholar]
  293. Henriques A. D., de Lencastre H., Piggot P. J. 1992; A Bacillus subtilis morphogene cluster that includes spoVE is homologous to the mra region of Escherichia coli . Biochimie 74:735–748
    [Google Scholar]
  294. Henriques A. O., Beall B. W., Roland K., Moran C. P. 1995; Characterization of cotj, σE-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J Bacteriol 177:3394–3406
    [Google Scholar]
  295. Herrler M., Bang H., Marahiel M. A. 1994; Cloning and characterization of ppiB, a Bacillus subtilis gene which encodes a cyclosporin A-sensitive peptidyl-prolyl cis-trans isomerase. Mol Microbiol 11:1073–1083
    [Google Scholar]
  296. Hicks K. A., Grossman A. D. 1995; Characterization of csh203:: Tn917lac, a mutation in Bacillus subtilis that makes the sporulation sigma factor σH essential for normal vegetative growth. J Bacteriol 177:3736–3742
    [Google Scholar]
  297. Higerd T. B. 1977; Isolation of acetyl esterase mutants of Bacillus subtilis 168. J Bacteriol 129:973–977
    [Google Scholar]
  298. Hilden I., Krath B. N., Hove-Jensen B. 1995; Tricistronic operon expression of the genes gcaD (tms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and etc in vegetative cells of Bacillus subtilis . J Bacteriol 177:7280–7284
    [Google Scholar]
  299. Hilton M. D., Alaeddinoglu N. G., Demain A. L. 1988; Bacillus subtilis mutant deficient in the ability to produce the dipeptide antibiotic bacilysin: isolation and mapping of the mutation. J Bacteriol 170:1018–1020
    [Google Scholar]
  300. Hoch J. A., Anagnostopoulos C. 1970; Chromosomal location and properties of radiation sensitivity mutations in Bacillus subtilis . J Bacteriol 103:295–301
    [Google Scholar]
  301. Hoch J. A., Mathews J. 1972; Genetic studies in Bacillus subtilis . In Spores V pp. 113–116 Halvorson H. O., Hanson R., Campbell L. L. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  302. Hoch J. A., Nester E.W. 1973; Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis . J Bacteriol 116:59–66
    [Google Scholar]
  303. Hoch J. A., Coukoulis H. J. 1978; Genetics of the α-ketoglutarate dehydrogenase complex of Bacillus subtilis . J Bacteriol 133:265–269
    [Google Scholar]
  304. Hoch J. A., Trach K., Kawamura F., Saito H. 1985; Identification of the transcriptional suppressor sof-1 as an alteration in the spoOA protein. J Bacteriol 161:552–555
    [Google Scholar]
  305. Hoch J. A. Unpublished data.
    [Google Scholar]
  306. Hofemeister J., Israeli-Reches M., Dubnau D. 1983; Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome. Mol Gen Genet 189:58–68
    [Google Scholar]
  307. Hofemeister J. 1994; Direct submission to EMBL/ GenBank/DDBJ - U13634.
    [Google Scholar]
  308. Hoffmann T., Troup B., Szabo A., Hungerer C., Jahn D. 1995; The anaerobic life of Bacillus subtilis:cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett 131:219–225
    [Google Scholar]
  309. Holmberg C., Beijer L., Rutberg B., Rutberg L. 1990; Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3- phosphate dehydrogenase (glpD). J Gen Microbiol 136:2367–2375
    [Google Scholar]
  310. Honda K., Nakamura K., Nishiguchi M., Yamane K. 1993; Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol 175:4885–4894
    [Google Scholar]
  311. Honeyman A. L., Stewart G. C. 1989; Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis . Mol Microbiol 2:735–741
    [Google Scholar]
  312. Honeyman A. L., Stewart G. C. 1989; The nucleotide sequence of the rodC operon of Bacillus subtilis . Mol Microbiol 3:1257–1268
    [Google Scholar]
  313. Honjo M., Nakayama A., Fukazawa K., Kawamura K., Ando K., Hori M., Furutani Y. 1990; A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J Bacteriol 172:1783–1790
    [Google Scholar]
  314. Hoshino T., McKenzie T., Schmidt S., Tanaka T., Sueoka N. 1987; Nucleotide sequence of Bacillus subtilis dnaB: a gene essential for DNA replication, initiation and membrane attachment. Proc Natl Acad Sci USA 84653–657
    [Google Scholar]
  315. Hudspeth D. S. S., Vary P. S. 1992; spoVG sequence of Bacillus megaterium and Bacillus subtilis . Biochim Biophys Acta 1130:229–231
    [Google Scholar]
  316. Hulett F. M., Kim E. E., Bookstein C., Kapp N. V., Edwards C. W., Wyckoff H. W. 1991; Bacillus subtilis alkaline phosphatase III and IV: cloning, sequence, and comparison of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J Biol Chem 266:1077–1084
    [Google Scholar]
  317. Hulett F. M., Lee J., Shi L., Sun G., Chestnut R., Sharkova E., Duggan M. F., Kapp N. 1994; Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis . J Bacteriol 176:1348–1358
    [Google Scholar]
  318. Igo M., Lampe M., Losick R. 1988; Structure and regulation of a Bacillus subtilis gene that is transcribed by the EB form of RNA polymerase holoenzyme. In Genetics and Biotechnology of Bacilli 2 pp. 151–156 Ganesan A. T., Hoch J. A. Edited by San Diego, CA: Academic Press;
    [Google Scholar]
  319. lijima T., Ikeda Y. 1970; Mutability of the phleomycin- resistant mutants of Bacillus subtilis.I. Isolation of genetically unstable mutants. . J Gen Appl Microbiol 16:419–427
    [Google Scholar]
  320. lijima T., Diesterhaft M. D., Freese E. 1977; Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J Bacteriol 129:1440–1447
    [Google Scholar]
  321. Ikawa S., Shibata T., Matsumoto K., lijima T., Saito H., Ando T. 1981; Chromosomal loci of genes controlling site- specific restriction endonucleases of Bacillus subtilis . Mol Gen Genet 183:1–6
    [Google Scholar]
  322. Ikeda M., Sato T., Wachi M., Jung H. K., Ishino F., Kobayashi Y., Matsuhashi M. 1989; Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J Bacteriol 171:6375–6378
    [Google Scholar]
  323. Ikeda M., Wachi M., Jung H. K., Ishino F., Matsuhashi M. 1990; Homology among MurC, MurD, MurE and MurF proteins in Escherichia coli and that between E.coli MurG and a possible MurG protein in Bacillus subtilis . J Gen Appl Microbiol 36:179–187
    [Google Scholar]
  324. Illing N., Errington J. 1991; The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the E form of RNA polymerase. Mol Microbiol 5:1927–1940
    [Google Scholar]
  325. Imai R., Sekiguchi T., Nosoh Y., Tsuda K. 1987; The nucleotide sequence of 3-isopropylmalate dehydrogenase gene from Bacillus subtilis . Nucleic Acids Res 15:4988
    [Google Scholar]
  326. Ionesco H., Michel J., Cami B., Schaeffer P. 1970; Genetics of sporulation in Bacillus subtilis Marburg. J Appl Bacteriol 33:13–24
    [Google Scholar]
  327. Ireton K., Gunther N. W., Grossman A. D. 1994; spoOJ is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis . J Bacteriol 176:5320–5329
    [Google Scholar]
  328. Irie R., Okamoto T., Fujita Y. 1982; A germination mutant of Bacillus subtilis deficient in response to glucose. J Gen Appl Microbiol 28:345–354
    [Google Scholar]
  329. Irie R., Fujita Y., Okamoto T. 1993; Cloning and sequencing of the gerK spore germination gene of Bacillus subtilis 168. J Gen Microbiol 139:453–465
    [Google Scholar]
  330. Itaya M., Tanaka T. 1991; Complete physical map of the Bacillus subtilis 168 chromosome constructed by a gene- directed mutagenesis method. J Mol Biol 220:631–648
    [Google Scholar]
  331. ItO J. 1973; Pleiotropic nature of bacteriophage tolerant mutants obtained in early-blocked asporogenous mutants of Bacillus subtilis 168. Mol Gen Genet 124:97–106
    [Google Scholar]
  332. ltoh T. 1976; Amino acid replacement in the protein S5 from a spectinomycin resistant mutant of Bacillus subtilis . Mol Gen Genet 144:39–42
    [Google Scholar]
  333. Iwakura M., Kawata M., Tsuda K., Tanaka T. 1988; Nucleotide sequences of the thymidylate synthase B and dihydrofolate reductase genes contained in one Bacillus subtilis operon. Gene 64:9–20
    [Google Scholar]
  334. Jaacks K. J., Healy J., Losick R., Grossman A. D. 1989; Identification and characterization of genes controlled by the sporulation-regulatory gene spoOH in Bacillus subtilis . J Bacteriol 171:4121–4129. L
    [Google Scholar]
  335. James W., Mandelstam J. 1985; spoVIC, a new sporulation locus in Bacillus subtilis affecting spore coats, germination and the rate of sporulation. J Gen Microbiol 131:2409–2419
    [Google Scholar]
  336. Jenkinson H. F. 1981; Germination and resistance defects in spores of Bacillus subtilis mutant lacking a coat polypeptide. J Gen Microbiol 127:81–91
    [Google Scholar]
  337. Jenkinson H. F. 1983; Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis . J Gen Microbiol 129:1945–1958
    [Google Scholar]
  338. Jenkinson H. F., Mandelstam J. 1983; Cloning of the Bacillus subtilis lys and spoIIIB genes in phage ɸ105. J Gen Microbiol 129:2229–2240
    [Google Scholar]
  339. Jeong S., Yoshikawa H., Takahashi H. 1993; Isolation and characterization of the secE homologue gene of Bacillus subtilis . Mol Microbiol 10:133–142
    [Google Scholar]
  340. Jin S., Sonenshein A. L. 1994; Identification of two distinct Bacillus subtilis citrate synthase genes. J Bacteriol 176:4669–4679
    [Google Scholar]
  341. Jin S., de Jesus-Berrios M., Sonenshein A. L. 1996; A Bacillus subtilis malate dehydrogenase gene. J Bacteriol 178:560–563
    [Google Scholar]
  342. Johnson W. C., Moran C. P. Jr Losick R. 1984; Two RNA polymerase sigma factors from Bacillus subtilis dis-criminate between overlapping promoters for a developmentally regulated gene. Nature 302:800–804
    [Google Scholar]
  343. Johnstone B. H. Unpublished data.
    [Google Scholar]
  344. Joris B., Dive G., Henriques A., Piggot P. J., Ghuysen J. M. 1990; The life-cycle proteins RodA of Escherichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Mol Microbiol 4:513–517
    [Google Scholar]
  345. Kaminskas E., Kimhi Y., Magasanik B. 1970; Urocanase and N-formimino-l-glutamate formiminohydrolase of Bacillus subtilis, two enzymes of the histidine degradation pathway. J Biol Chem 245:3536–3544
    [Google Scholar]
  346. Kane J. F., Goode R. L., Wainscott J. 1975; Multiple mutations in cysA14 mutants of Bacillus subtilis . J Bacteriol 121:204–211
    [Google Scholar]
  347. Kane J. F. 1977; Regulation of a common aminotransferase subunit. J Bacteriol 132:419–425
    [Google Scholar]
  348. Kanzaki N., Miyagawa K. 1990; Nucleotide sequence of the Bacillus subtilis IMP dehydrogenase gene. Nucleic Acids Res 18:6710
    [Google Scholar]
  349. Kapfer W., Walter J., Trautner T. A. 1991; Cloning, characterization and evolution of the BsuFI restriction endo-nuclease gene of Bacillus subtilis and purification of the enzyme. Nucleic Acids Res 19:6457–6463
    [Google Scholar]
  350. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of Bacillus subtilis defective in DNA synthesis. Mol Gen Genet 108:277–287
    [Google Scholar]
  351. Karamata D., Mcconnell M., Rogers H. J. 1972; Mapping of rod mutants of Bacillus subtilis . J Bacteriol 111:73–79
    [Google Scholar]
  352. Karmazyn-Campelli C., Bonamy C., Savelli B., Stragier P. 1989; Tandem genes encoding sigma-factors for consecutive steps of development in Bacillus subtilis . Genes Dev 3:150–157
    [Google Scholar]
  353. Karow M. L., Glaser P., Piggot P. J. 1995; Identification of a gene, spoIIR, that links the activation of σE to the transcriptional activity of σF during sporulation in Bacillus subtilis . Proc Natl Acad Sci USA 922012–2016
    [Google Scholar]
  354. Kelly M. S., Pritchard R. H. 1963; Selection for linked loci in Bacillus subtilis by means of transformation. Heredity 17:598–603
    [Google Scholar]
  355. Kelly M. S. 1967; Physical and mapping properties of distant linkages between genetic markers in transformation of Bacillus subtilis . Mol Gen Genet 99:333–349
    [Google Scholar]
  356. Kempf B., Bremer E. 1995; OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis . J Biol Chem 270:16701–16713
    [Google Scholar]
  357. Kiel J. A., Boels J. M., Beldman G., Venema G. 1994; Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol 11:203–218
    [Google Scholar]
  358. Kil Y. V., Mironov V. N., Gorishin I. Yu., Kreneva R. A., Perumov D. A. 1992; Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Mol Gen Genet 233:483–486
    [Google Scholar]
  359. Kirsch M. L, Peters P. D., Hanlon D. W., Kirby J. R., Ordal G. W. 1993; Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis . J Biol Chem 268:18610–18616
    [Google Scholar]
  360. Kirsch M. L., Carpenter P. B., Ordal G. W. 1994; A putative ATP-binding protein from the che/fla locus of Bacillus subtilis . DNA Seq 4:271–275
    [Google Scholar]
  361. Kiss A., Posfai G., Keller C. C., Venetianer P., Roberts R. J. 1985; Nucleotide sequence of the BrRI restriction-modification system. Nucleic Acids Res 13:6403–6421
    [Google Scholar]
  362. Kiss I., Berek I., Ivánovics G. 1971; Mapping the δ-aminolaevulinic acid synthetase locus in Bacillus subtilis . J Gen Microbiol 66:153–159
    [Google Scholar]
  363. Klein C., Kaletta C., Schnell N., Entian K. D. 1992; Analysis of genes involved in biosynthesis of the antibiotic subtilin. Appl Environ Microbiol 58:132–142
    [Google Scholar]
  364. Klein M., Hofmann B., Klose M., Freudl R. 1994; Isolation and characterization of a Bacillus subtilis sec A mutant allele conferring resistance to sodium azide. FEMS Microbiol Lett 124:393–397
    [Google Scholar]
  365. Klier A. F., Rapoport G. 1988; Genetics and regulation of carbohydrate catabolism in Bacillus. Annu Rev Microbiol 42:65–95
    [Google Scholar]
  366. Kobayashi H., Kobayashi K., Kobayashi Y. 1977; Isolation and characterization of fusidic acid-resistant, sporulation-defective mutants of Bacillus subtilis . J Bacteriol 132:262–269
    [Google Scholar]
  367. Kobayashi K., Shoji K., Shimizu T., Nakano K., Sato T., Kobayashi Y. 1995; Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spoOA) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J Bacteriol 177:176–182
    [Google Scholar]
  368. Koide A., Hoch J. A. 1994; Identification of a second oligopeptide transport system in Bacillus subtilis and determination of its role in sporulation. Mol Microbiol 13:417–426
    [Google Scholar]
  369. Koide Y., Nakamura A., Uozumi T., Beppu T. 1986; Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis . J Bacteriol 167:110–116
    [Google Scholar]
  370. Kong L., Siranosian K. J., Grossman A. D., Dubnau D. 1993; Sequence and properties of mecA, a negative regulator of genetic competence in Bacillus subtilis . Mol Microbiol 9:365–373
    [Google Scholar]
  371. Kontinen V. P., Sarvas M. 1988; Mutants of Bacillus subtilis defective in protein export. J Gen Microbiol 134:2333–2344
    [Google Scholar]
  372. Kontinen V. P., Saris P., Sarvas M. 1991; A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol Microbiol 5:1273–1283
    [Google Scholar]
  373. Kooistra J., Vosman B., Venema G. 1988; Cloning and characterization of a Bacillus subtilis transcription unit involved in ATP-dependent DNase synthesis. J Bacteriol 170:4791–4797
    [Google Scholar]
  374. Kooistra J., Venema G. 1991; Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-de-pendent nuclease synthesis. J Bacteriol 173:3644–3655
    [Google Scholar]
  375. Kraus A., Hueck C., Gartner D., Hillen W. 1994; Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol 176:1738–1745
    [Google Scholar]
  376. Kreneva R. A., Perumov D. A. 1990; Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon. Mol Gen Genet 222:467–469
    [Google Scholar]
  377. Krulwich T. A., Clejan S., Falk L. H., Guffanti A. A. 1987; Incorporation of specific exogenous fatty acids into membrane lipids modulates protonophore resistance in Bacillus subtilis. . J Bacteriol 169:4479–4485
    [Google Scholar]
  378. Kunkel B., Sandman K., Panzer S., Youngman P., Losick R. 1988; The promoter for a sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal and spatial control of gene expression. J Bacteriol 170:3513–3522
    [Google Scholar]
  379. Kunkel B., Kroos L., Poth H., Youngman P., Losick R. 1989; Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis . Genes Dev 3:1735–1744
    [Google Scholar]
  380. Kunkel B., Losick R., Stragier P. 1990; The Bacillus subtilis gene for the developmental transcription factor σK is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev 4:525–535
    [Google Scholar]
  381. Kunst F., Débarbouillé M., Msadek T., Young M., Mauël C., Karamata D., Klier A., Rapoport G., Dedonder R. 1988; Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J Bacteriol l70:5093–5101
    [Google Scholar]
  382. Kunst F., Vassarotti A., Danchin A. 1995; Organization of the European Bacillus subtilis genome sequencing project. Microbiology 141:249–255
    [Google Scholar]
  383. Kuroda A., Sekiguchi J. 1990; Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J Gen Microbiol 136:2209–2216
    [Google Scholar]
  384. Kuroda A., Sekiguchi J. 1991; Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol 173:7304–7312
    [Google Scholar]
  385. Kuroda A., Rashid M. H., Sekiguchi J. 1992; Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysing and the spoIID product. J Gen Microbiol 138:1067–1076
    [Google Scholar]
  386. Kuroda A., Asami Y., Sekiguchi J. 1993; Molecular cloning of a sporulation-specific cell wall hydrolase. J Bacteriol 175:6260–6268
    [Google Scholar]
  387. Lafauci G., Widom R. L., Eisner R. L., Jarvis E. D., Rudner R. 1986; Mapping of rRNA genes with integrable plasmids in Bacillus subtilis . J Bacteriol 165:204–214
    [Google Scholar]
  388. Lavallie E. R., Stahl M. L. 1989; Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation. J Bacteriol 171:3085–3094
    [Google Scholar]
  389. Lakomova N. M., Tsurikova T. S., Prozorov A. A. 1980; Possible participation of RNA polymerase III in suppression of recH mutation of Bacillus subtilis . Genetika 16:583–587
    [Google Scholar]
  390. Lamont I. L., Mandelstam J. 1984; Identification of a new sporulation locus, spoIIIF, in Bacillus subtilis . J Gen Microbiol 130:1253–1261
    [Google Scholar]
  391. Lampe M., Binnie C., Schmidt R., Losick R. 1988; Cloned gene encoding the δ subunit of Bacillus subtilis RNA polymerase. Gene 67:13–19
    [Google Scholar]
  392. Lampel K. A., Uratani B., Chaudhry G. R., Ramaley R. F., Rudikoff S. 1986; Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J Bacteriol 166:238–243
    [Google Scholar]
  393. Lapidus A., Galleron N., Sorokin A., Ehrlich S. D. Unpublished data.
    [Google Scholar]
  394. Lazarevic V., Margot P., Suldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961
    [Google Scholar]
  395. Lazarevic V., Karamata D. 1995; The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16:345–355
    [Google Scholar]
  396. Lazarevic V., Mauël G, Soldo B., Freymond P. P., Margot P., Karamata D. 1995; Sequence analysis of the 308° to 311° segment of the Bacillus subtilis 168 chromosome, a region devoted to cell wall metabolism, containing non-coding grey holes which reveal chromosomal rearrangements. Microbiology 141:329–335
    [Google Scholar]
  397. Lazarevic V. 1995; Sequence analysis of the 305° to 311° segment of the B.subtilis 168 chromosome. 8th International Conference on Bacilli, abstract p. 66 Stanford, CA:
    [Google Scholar]
  398. Le Coq D. G., Lindner C., Kruger S., Steinmetz M., Stulke J. 1995; New β-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol 177:1527–1535
    [Google Scholar]
  399. Ledeaux J. R., Grossman A. D. 1995; Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis . J Bacteriol 177:166–175
    [Google Scholar]
  400. Lee J. K., Edwards C. W., Hulett F. M. 1991; Identi fication of four unique clones encoding 10 kDa proteins from Bacillus that cause phenotypic complementation of a phoA mutant strain of Escherichia coli . J Gen Microbiol 137:667–677
    [Google Scholar]
  401. Lee S., Price C. W. 1993; The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division. Mol Microbiol 7:601–610
    [Google Scholar]
  402. Leibovici J., Anagnostopoulos C. 1969; Proprietes de la threonine desaminase de la souche sauvage et d̒un mutant sensible a la valine de Bacillus subtilis . Bull Soc Chim Biol 51:691–707
    [Google Scholar]
  403. Leighton T. Unpublished data.
    [Google Scholar]
  404. Lepesant J.-A., Kunst F., Lepesant-Kejzlarova J., Dedonder R. 1972; Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol Gen Genet 118:135–160
    [Google Scholar]
  405. Lepesant-Kejzlarova J., Lepesant J.-A., Walle J., Billault A., Dedonder R. 1975; Revision of the linkage map of Bacillus subtilis 168: indications for circularity of the chromosome. J Bacteriol 121:823–834
    [Google Scholar]
  406. Lerner C. G., Stephenson B. T., Switzer R. L. 1987; Structure of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster. J Bacteriol 169:2202–2206
    [Google Scholar]
  407. Leskelä S., Kontinen V. P., Sarvas M. 1996; Molecular analysis of an operon in Bacillus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence. Microbiology 142:71–77
    [Google Scholar]
  408. Levin P. A., Margolis P. S., Sun D. 1992; Cloning and characterization of the B.subtilis homologs of the Escherichia coli cell division genes minC and minD . XI International Spores Conference (Spores XI) abstract no. 54
    [Google Scholar]
  409. Levin P. A., Fan N., Ricca E., Driks A., Losick R., Cutting S. 1993; An unusually small gene required for sporulation by Bacillus subtilis . Mol Microbiol 9:761–771
    [Google Scholar]
  410. Levin P. A., Losick R. 1994; Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J Bacteriol 176:1451–1459
    [Google Scholar]
  411. Leyva-Vazquez M. A., Setlow P. 1994; Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis . J Bacteriol 176:3903–3910
    [Google Scholar]
  412. Li M., Wong S. L. 1992; Cloning and characterization of the groESL operon from Bacillus subtilis . J Bacteriol 174:3981–3992
    [Google Scholar]
  413. Lindgren V., Rutberg L. 1974; Glycerol metabolism in Bacillus subtilis: gene-enzyme relationships. J Bacteriol 119:431–442
    [Google Scholar]
  414. Lindgren V., Holmgren E., Rutberg L. 1977; Bacillus subtilis mutant with temperature-sensitive net synthesis of phosphatidylethanolamine. J Bacteriol 132:473–484
    [Google Scholar]
  415. Lipsky R. H., Rosenthal R., Zahler S. A. 1981; Defective specialized SPβ transducing bacteriophage of Bacillus subtilis that carry the sup-3 or sup-44 gene. J Bacteriol 148:1012–1015
    [Google Scholar]
  416. Loewen P. C., Switala J. 1987; Genetic mapping of katA, a locus that affects catalase 1 levels in Bacillus subtilis . J Bacteriol 169:5848–5851
    [Google Scholar]
  417. Londono-Vallejo J. A., Dubnau D. A. 1993; comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 9:119–131
    [Google Scholar]
  418. Longchamp P. F., Mauël C., Karamata D. 1994; Lytic enzymes associated with defective prophages of Bacillus subtilis:sequencing and characterization of the region com-prising the N-acetylmuramoyl-l-alanine amidase gene of prophage PBSX. Microbiology 140:1855–1867
    [Google Scholar]
  419. Lopez-Dias I., Clarke S., Mandelstam J. 1986; spoIID operon of Bacillus subtilis:cloning and sequence. J Gen Microbiol 132:341–354
    [Google Scholar]
  420. Loshon C. A., Beary K. E., Chander M., Setlow P. 1994; Cloning and sequencing of the sspF (originally 0·3 kb) genes from Bacillus cereus and Bacillus megaterium . Gene 150:203–204
    [Google Scholar]
  421. Love E., D’Ambrosio J., Brown N. C., Dubnau D. 1976; Mapping of the gene specifying DNA polymerase III of Bacillus subtilis . Mol Gen Genet 144:313–321
    [Google Scholar]
  422. Lovett P. S., Ambulos N. P. Jr Mulbry W., Noguchi N., Rogers E. J. 1991; UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis . J Bacteriol 173:1810–1812
    [Google Scholar]
  423. Lu Y., Chen N.-Y., Paulus H. 1991; Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. J Gen Microbiol 137:1135–1143
    [Google Scholar]
  424. Ludwig H. C., Lottspeich F., Henschen A., Ladenstein R., Bacher A. 1987; Heavy riboflavin synthase of Bacillus subtilis, primary structure of the β subunit. J Biol Chem 262:1016–1021
    [Google Scholar]
  425. Luttinger A., Hahn J., Dubnau D. 1996; Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis . Mol Microbiol 19:343–356
    [Google Scholar]
  426. Mackay R. M., Lo A., Willick G., Zuker M., Baird S., Dove M., Moranelii F., Seligy V. 1986; Structure of a Bacillus subtilis endo-β1,4-glucanase gene. Nucleic Acids 14:9159–9170
    [Google Scholar]
  427. Mackey C. J., Warburg R. J., Halvorson H. O., Zahler S. A. 1984; Genetic and physical analysis of the ilvBC-leu region in Bacillus subtilis . Gene 32:49–56
    [Google Scholar]
  428. Magnusson K., Philips M. K., Guest J. R., Rutberg L. 1986; Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex. J Bacteriol 166:1067–1071
    [Google Scholar]
  429. Mahler I., Warburg R., Tipper D. J., Halvorson H. O. 1984; Cloning of an unstable spoIIA-tyrA fragment from Bacillus subtilis . J Gen Microbiol 130:411–421
    [Google Scholar]
  430. Makaroff C. A., Zalkin H., Switzer R. L., Vollmer S. J. 1983; Cloning of the Bacillus subtilis glutamine phospho-ribosylpyrophosphate amidotransferase gene in Escherichia coli . J Biol Chem 258:10586–10593
    [Google Scholar]
  431. Makino F., Munakata N. 1977; Isolation and characterization of a Bacillus subtilis mutant with a defective N-glycosidase activity for uracil-containing deoxyribonucleic acid. J Bacteriol 131:438–445
    [Google Scholar]
  432. Mäntsälä P., Zalkin H. 1992; Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol 174:1883–1890
    [Google Scholar]
  433. Margolis P., Losick R. 1992 XI International Spores Conference (Spores XI) abstract
    [Google Scholar]
  434. Margolis P. S., Driks A., Losick R. 1993; Sporulation gene spoIIB from Bacillus subtilis . J Bacteriol 175:528–540
    [Google Scholar]
  435. Margot P., Karamata D. 1992; Identification of the structural gene for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol Gen Genet 232:359–366
    [Google Scholar]
  436. Margot P., Mauël C., Karamata D. 1994; The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545
    [Google Scholar]
  437. Marini P., Li S. J., Gardiol D., Cronan J. E., de Mendoza D. 1995; The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis. J Bacteriol 177:7003–7006
    [Google Scholar]
  438. Marquez L. M., Helmann J. D., Ferrari E., Parker H. M., Ordal G. W., Chamberlin M. J. 1990; Studies of σD-dependent functions in Bacillus subtilis . J Bacteriol 172:3435–3443
    [Google Scholar]
  439. Marquez-Magana L. M., Chamberlin M. J. 1994; Characterization of the sigD transcription unit of Bacillus subtilis . J Bacteriol 176:2427–2434
    [Google Scholar]
  440. Marrero R., Yasbin R. E. 1988; Cloning of the Bacillus subtilis recE + gene and functional expression of recE + in B. subtilis . J Bacteriol 170:335–344
    [Google Scholar]
  441. Martin I., Débarbouillé M., Klier A., Rapoport G. 1987; Identification of a new locus, sacV, involved in the regulation of levansucrase synthesis in Bacillus subtilis . FEMS Microbiol Lett 44:39–43
    [Google Scholar]
  442. Martin I., Débarbouillé M., Ferrari E., Klier A., Rapoport G. 1987; Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208:177–184
    [Google Scholar]
  443. Martin-Verstraete I., Débarbouillé M., Klier A., Rapoport G. 1990; Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671
    [Google Scholar]
  444. Martinussen J., Glaser P., Andersen P. S., Saxild H. H. 1995; Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis . J Bacteriol 177:271–274
    [Google Scholar]
  445. Mastromei G., Barberio C., Pistolesi S., Polsinelli M. 1988; Isolation of Bacillus subtilis transformation-deficient mutants and mapping of competence genes. Genet Res 54:1–5
    [Google Scholar]
  446. Masuda E. S., Anaguchi H., Yamada K., Kobayashi Y. 1988; Two developmental genes encoding sigma factor homologs are arranged in tandem in Bacillus subtilis . Proc Natl Acad Sci USA 857637–7641
    [Google Scholar]
  447. Masuda E. S., Anaguchi H., Sato T., Takeuchi M., Kobayashi Y. 1990; Nucleotide sequence of the sporulation gene spoIIGA from Bacillus subtilis . Nucleic Acids Res 18:657
    [Google Scholar]
  448. Mathiopoulos C., Sonenshein A. L. 1989; Identification of Bacillus subtilis genes expressed early during sporulation. Mol Microbiol 3:1071–1081
    [Google Scholar]
  449. Mathiopoulos C., Mueller J. P., Slack F. J., Murphy C. G., Patankar S., Bukusoglu G., Sonenshein A. L. 1991; A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol Microbiol 5:1903–1913
    [Google Scholar]
  450. Matsuzaki S., Kobayashi Y. 1984; New mutation affecting the synthesis of some membrane proteins and sporulation in Bacillus subtilis . J Bacteriol 159:228–232
    [Google Scholar]
  451. Matsuzaki S., Kobayashi Y. 1985; Genetic heterogeneity in the cysA-fus region of the Bacillus subtilis chromosome: identification of the hos gene. J Bacteriol 163:1336–1338
    [Google Scholar]
  452. Mattioli R., Bazzicalupo M., Federici G., Gallori E., Polsinelli M. 1979; Characterization of mutants of Bacillus subtilis resistant to S-(2-aminoethyl)cysteine. J Gen Microbiol 114:223–225
    [Google Scholar]
  453. Mauël C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly (glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. T Gen Microbiol 137:929–941
    [Google Scholar]
  454. Mauël G, Young M., Monsutti-Grecescu A., Marriott S. A., Karamata D. 1994; Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140:2279–2288
    [Google Scholar]
  455. Maznitsa I. I., Sukhodolets V. V., Ukhabotina L. S. 1983; Cloning of Bacillus subtilis 168 genes compensating the defect of mutations for thymidine phosphorylase and uridine phosphorylase in Escherichia coli cells. Genetika 19:881–887
    [Google Scholar]
  456. Mazza G., Forunato A., Ferrari E., Canosi U., Falaschi A., Polsinelli M. 1975; Genetic and enzymic studies on the recombination process in Bacillus subtilis . Mol Gen Genet 136:9–30
    [Google Scholar]
  457. Mazza G., Galizzi A. 1978; The genetics of DNA replication, repair and recombination in Bacillus subtilis . Microbiologica 1:111–135
    [Google Scholar]
  458. McDonald K. O., Burke W. F. Jr 1982; Cloning of the Bacillus subtilis sulfanilamide resistance gene in Bacillus subtilis . J Bacteriol 149:391–394
    [Google Scholar]
  459. McDonnell G. E., Wood H., Devine K. M., McConnel D. J. 1994; Genetic control of bacterial suicide: regulation of the induction of PBSX in Bacillus subtilis . J Bacteriol 176:5820–5830
    [Google Scholar]
  460. McEnroe A. S., Taber H. 1984; Correlation between cytochrome aa3 concentration and streptomycin accumulation in Bacillus subtilis . Antimicrob Agents Chemother 26:507–512
    [Google Scholar]
  461. Micka B., Groch N., Heinemann U., Marahiel M. 1991; Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. J Bacteriol 173:3191–3198
    [Google Scholar]
  462. Miczak A., Berek I., Ivanovics G. 1976; Mapping the uroporphyrinogen decarboxylase, coproporphyrinogen oxidase and ferrochelatase loci in Bacillus subtilis . Mol Gen Genet 146:85–87
    [Google Scholar]
  463. Miczak A., Pragai B., Berek I. 1979; Maping the uroporphyrinogen III cosynthase locus in Bacillus subtilis . Mol Gen Genet 174:293–295
    [Google Scholar]
  464. Miles J. S., Guest J. R. 1985; Complete nucleotide sequence of the fumarase gene citG of Bacillus subtilis 168. Nucleic Acids Res 13:131–140
    [Google Scholar]
  465. Milhaud P., Balassa G., Zucca J. 1978; Spore control (Sco) mutations in Bacillus subtilis. I. Selection and genetic mapping of Sco mutations. Mol Gen Genet 163:35–44
    [Google Scholar]
  466. Mirel D. B., Chamberlin M. J. 1989; The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. J Bacteriol 171:3095–3101
    [Google Scholar]
  467. Mirel D. B., Lustre V. M., Chamberlin M. J. 1992; An operon of Bacillus subtilis motility genes transcribed by the σD form of RNA polymerase. J Bacteriol 174:4197–4204
    [Google Scholar]
  468. Mirel D. B., Lauer P., Chamberlin M. J. 1994; Identification of flagellar synthesis regulatory and structural genes in a σD -dependent operon of Bacillus subtilis . J Bacteriol 176:4492–4500
    [Google Scholar]
  469. Mironov V. N., Kraev A. S., Chernov B. K., Vlyanov A. B., Golova Y. B., Pozmogova G. E., Simonova M. L., Skryabin K. G. 1989; Genes of riboflavin biosynthesis of Bacillus subtilis: complete primary structure and model of organization. Dokl Akad Nauk SSSR 305:482–486
    [Google Scholar]
  470. Mironov V. N., Chikindas M. L., Kraev A. S., Stepanov A. I., Skryabin K. G. 1990; Operon organization of the riboflavin biosynthesis genes of Bacillus subtilis . Dokl Akad Nauk SSSR 312:237–240
    [Google Scholar]
  471. Mironov V. N., Kraev A. S., Chikindas M. L., Chernov B. K., Stepanov A. I., Skryabin K. G. 1994; Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw. Mol Gen Genet 242:201–208
    [Google Scholar]
  472. Mitchell C., Morris P. W., Vary J. C. 1992; Identification of proteins phosphorylated by ATP during sporulation of Bacillus subtilis . J Bacteriol 174:2474–2477
    [Google Scholar]
  473. Mitchell C., Morris P. W., Lum L., Spiegelman G., Vary J. C. 1992; The amino acid sequence of a Bacillus subtilis phosphoprotein that matches an orfY-tsr coding sequence. Mol Microbiol 6:1345–1349
    [Google Scholar]
  474. Mitsushima K., Takimoto A., Sonoyama T., Yagi S. 1995; Gene cloning, nucleotide sequence, and expression of a cephalosporin-C deacetylase from Bacillus subtilis . Appl Environ Microbiol 61:2224–2229
    [Google Scholar]
  475. Miyakawa Y., Komano T. 1981; Study on the cell cycle of Bacillus subtilis using temperature-sensitive mutants. I. Isolation and genetic analysis of the mutants defective in septum formation. Mol Gen Genet 181:207–214
    [Google Scholar]
  476. Miyao A., Theeragool G., Takeuchi M., Kobayashi Y. 1993; Bacillus subtilis spoVE gene is transcribed by σE -associated RNA polymerase. J Bacteriol l75:4081–4086
    [Google Scholar]
  477. Mizuno M., Masuda S., Takemaru K., Hosono S., Sato T., Takeuchi M., Kobayashi Y. 1996; Systematic sequencing of the 283 kb 210°-232° region of the Bacillus subtilis genome containing the skin element and many sporulation genes. Microbiology 142: (in press)
    [Google Scholar]
  478. Moir A., Lafferty E., Smith D. A. 1979; Genetic analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype with map location. J Gen Microbiol 111:165–180
    [Google Scholar]
  479. Mollgaard H., Neuhard J. 1978; Deoxycitidylate deaminase from Bacillus subtilis. Purification, characterization and physiological function. J Biol Chem 253:3536–3542
    [Google Scholar]
  480. Mollgaard H. 1980; Deoxyadenosine/deoxycytidine kinase from Bacillus subtilis. Purification, characterization, and physiological function. J Biol Chem 255:8216–8220
    [Google Scholar]
  481. Morbidoni H. R., de Mendoza D., Cronan J. E. 1995; Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis . J Bacteriol 177:5899–5905
    [Google Scholar]
  482. Moriya S., Ogasawara N., Yoshikawa H. 1985; Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10000 base pairs in the origin region. Nucleic Acids Res 13:2251–2265
    [Google Scholar]
  483. Morohoshi F., Hayashi K., Munakata N. 1989; Bacillus subtilis gene coding for constitutive O-6 methylguanine-DNA alkyltransferase. Nucleic Acids Res 17:6531–6543
    [Google Scholar]
  484. Morohoshi F., Hayashi K., Munakata N. 1990; Bacillus subtilis ada operon encodes two DNA alkyltransferases. Nucleic Acids Res 18:5473–5480
    [Google Scholar]
  485. Morohoshi F., Hayashi K., Munakata N. 1991; Molecular analysis of Bacillus subtilis ada mutants deficient in the adaptive response to simple alkylating agents. J Bacteriol 173:7834–7840
    [Google Scholar]
  486. Morohoshi F., Hayashi K., Munkata N. 1993; Bacillus subtilis alkA gene encoding inducible 3-methyladenine DNA glycosylase is adjacent to the ada operon. J Bacteriol 175:6010–6017
    [Google Scholar]
  487. Morohoshi F., Munakata N. Unpublished data.
    [Google Scholar]
  488. Moszer I., Glaser P., Danchin A. 1995; SubtiList: a relational database for the Bacillus subtilis genome. Microbiology 141:261–268
    [Google Scholar]
  489. Mountain A., Baumberg S. 1980; Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168. Mol Gen Genet 178:691–701
    [Google Scholar]
  490. Mountain A., Mcchesney J., Smith M.C.M., Baumberg S. 1986; Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli . J Bacteriol 165:1026–1028
    [Google Scholar]
  491. Mountain A., Smith M.C.M., Baumberg S. 1990; Nucleotide sequence of the Bacillus subtilis argF gene encoding ornithine carbamoyltransferase. Nucleic Acids Res 18:4594
    [Google Scholar]
  492. Msadek T., Kunst F., Klier A., Rapoport G. 1991; DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ . J Bacteriol 173:2366–2377
    [Google Scholar]
  493. Msadek T., Kunst F., Rapoport G. 1994; MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc Natl Acad Sci USA 915788–5792
    [Google Scholar]
  494. Mueller J. P., Taber H. W. 1988; Genetic regulation of cytochrome aa3 in Bacillus subtilis . In Genetics and Biotechnology of Bacilli 2 pp. 91–95 Ganesan A. T., Hoch J. A. Edited by San Diego, CA: Academic Press;
    [Google Scholar]
  495. Mueller J. P., Taber H. W. 1989; Isolation and sequence of eta A, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis . J Bacteriol 171:4967–4978
    [Google Scholar]
  496. Mueller J. P., Sonenshein A. L. 1992; Role of the Bacillus subtilis gsiA gene in regulation of early sporulation gene expression. J Bacteriol 174:4374–4383
    [Google Scholar]
  497. Mueller J. P., Bukusoglu G., Sonenshein A. L. 1992; Transcriptional regulation of Bacillus subtilis glucose starvation inducible genes: control of gsiA by the ComP-ComA signal transduction system. J Bacteriol 174:4361–4373
    [Google Scholar]
  498. Mulbry W. W., Ambulos N. P. Jr Lovett P. S. 1989; Bacillus subtilis mutant allele sup-3 causes lysine insertion at ochre codons: use of sup-3 in studies of translational attenuation. J Bacteriol 171:5322–5324
    [Google Scholar]
  499. Munakata H., Ikeda Y. 1968; Mutant of Bacillus subtilis producing ultraviolet-sensitive spores. Biochem Biophys Res Commun 33:469–475
    [Google Scholar]
  500. Murphy N., McConnell D. J., Cantwell B. A. 1984; The DNA sequence of the gene and genetic control sites for the excreted B.subtilis enzyme β-glucanase. Nucleic Acids Res 12:5355–5367
    [Google Scholar]
  501. Muto A. 1993; Direct submission to EMBL/GenBank/DDBJ-D25230.
    [Google Scholar]
  502. Mysliwiec T. H., Errington J., Vaidya A. B., Bramucci M. G. 1991; The Bacillus subtilis spoOJ gene: evidence for involvement in catabolite repression of sporulation. J Bacteriol 173:1911–1919
    [Google Scholar]
  503. Nagahari K., Sakaguchi K. 1978; Cloning of Bacillus subtilis leucine A, B and C genes with Escherichia coli plasmids and expression of the leuC gene in E.coli . Mol Gen Genet 158:263–270
    [Google Scholar]
  504. Nakamura A., Uozumi T., Beppu T. 1987; Nucleotide sequence of a cellulase gene of Bacillus subtilis . Eur J Biochem 164:317–320
    [Google Scholar]
  505. Nakamura K., Nakamura A., Takamatsu H., Yoshikawa H., Yamane K. 1990; Cloning and characterization of a Bacillus subtilis gene homologous to E.coli secY . J Biochem (Tokyo) 107:603–607
    [Google Scholar]
  506. Nakane A., Ogawa K., Nakamura K., Yamane K. 1994; Nucleotide sequence of the shikimate kinase gene (aroI) of Bacillus subtilis . J Ferment Bioeng 77:312–314
    [Google Scholar]
  507. Nakano M. M., Marahiel M. A., Zuber P. 1988; Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis . J Bacteriol 170:5662–5668
    [Google Scholar]
  508. Nakano M. M., Zuber P. 1989; Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis . J Bacteriol 171:5347–5353
    [Google Scholar]
  509. Nakano M. M., Magnuson R., Myers A., Curry J., Grossman A. D., Zuber P. 1991; srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis . J Bacteriol 173:1770–1778
    [Google Scholar]
  510. Nakano M. M., Corbell N., Besson J., Zuber P. 1992; Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis . Mol Gen Genet 232:313–321
    [Google Scholar]
  511. Nakano M. M., Yang F., Hardin P., Zuber P. 1995; Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis . J Bacteriol 177:573–579
    [Google Scholar]
  512. Nakano Y., Tanaka E., Kato C., Kimura K., Horikoshi K. 1989; The complete nucleotide sequence of the glutamine synthetase gene (glnA) of Bacillus subtilis . FEMS microbial Lett 48:81–86
    [Google Scholar]
  513. Nasser D., Nester E. W. 1967; Aromatic amino acid biosynthesis: gene-enzyme relationships in Bacillus subtilis . J Bacteriol 94:1706–1714
    [Google Scholar]
  514. Navarro J., Chabot J., Sherrill K., Aneja R., Zahler S. A., Racker E. 1985; Interaction of duramycin with artificial and natural membranes. Biochemistry 24:4645–4650
    [Google Scholar]
  515. Nessi C., Albertini A. M., Speranza M. L., Galizzi A. 1995; The outB gene of Bacillus subtilis codes for NAD synthetase. J Biol Chem 270:6181–6185
    [Google Scholar]
  516. Nester E. W., Montoya A. L. 1976; An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis . J Bacteriol 126:699–705
    [Google Scholar]
  517. Neuhard J., Price A. R., Schack L., Thomassen E. 1978; Two thymidylate synthetases in Bacillus subtilis . Proc Natl Acad Sci USA 751194–1198
    [Google Scholar]
  518. Neuhard J. 1983; Utilization of preformed pyrimidine bases and nucleosides. In Metabolism of Nucleotides, Nucleosides, and Nucleobases in Microorganisms pp. 95–148 Munch-Petersen A. Edited by New York: Academic Press;
    [Google Scholar]
  519. Neyfakh A. A., Bidnenko V. E., Chen L. B. 1991; Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci USA 884781–4785
    [Google Scholar]
  520. Ng K., Ye R., Wu X. C., Wong S. L. 1992; Characterization of sorbitol dehydrogenase and its gene from Bacillus subtilis . J Biol Chem 267:24989–24994
    [Google Scholar]
  521. Nicholson W. L., Chambliss G. H. 1986; Molecular cloning of cis-acting regulatory alleles of the Bacillus subtilis amyR region by using gene conversion transformation. J Bacteriol 165:663–670
    [Google Scholar]
  522. Nilsson D., Hove-Jensen B. 1987; Phosphoribosylpyrophosphate synthetase of Bacillus subtilis: cloning, characterization and chromosomal mapping of the prs gene. Gene 53:247–255
    [Google Scholar]
  523. Nilsson D., Hove-Jensen B., Arnvig K. 1989; Primary structure of the tms and prs genes of Bacillus subtilis . Mol Gen Genet 218:565–571
    [Google Scholar]
  524. Nilsson R. P., Beijer L., Rutberg B. 1994; The glpT and glpQ genes of the glycerol regulon in Bacillus subtilis . Microbiology 140:723–730
    [Google Scholar]
  525. Noback M. A., Terpstra P., Holsappel S., Venema G., Bron S. 1996; A 22 kb DNA sequence in the cspB-glpPFKD region at 75° of the Bacillus subtilis chromosome. Microbiology 142: (in press)
    [Google Scholar]
  526. Noda Y., Yoda K., Takatsuki A., Yamasaki M. 1992; TmrB, protein responsible for tunicamycin resistance of Bacillus subtilis is a novel ATP-binding membrane protein. J Bacteriol 174:4302–4307
    [Google Scholar]
  527. Noguchi N., Sasatsu M., Kono M. 1993; Genetic mapping in Bacillus subtilis 168 of the aadK gene which encodes aminoglycoside 6-adenylyltransferase. FEMS Microbiol Lett 114:47–52
    [Google Scholar]
  528. Nomura S., Yamane K., Sasaki T., Yamasaki M., Tamura G., Maruo B. 1978; Tunicamycin-resistant mutants and chromosomal locations of mutational sites in Bacillus subtilis . J Bacteriol 136:818–821
    [Google Scholar]
  529. Nygaard P., Duckert P., Saxild H. H. 1988; Purine gene organization and regulation in Bacillus subtilis . In Genetics and Biotechnology of Bacilli 2 pp. 57–61 Ganesan A. T., Hoch J. A. Edited by San Diego, CA: Academic Press;
    [Google Scholar]
  530. Nygaard P., Duckert P., Saxild H. H. 1996; Role of adenine deaminase in purine salvage and nitrogen metabolism and characterization of the ade gene in Bacillus subtilis . J Bacteriol 178:846–853
    [Google Scholar]
  531. O’Reilly M., Woodson K., Dowds B. C., Devine K. M. 1994; The citrulline biosynthetic operon, argC-F, a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by spo0A . Mol Microbiol 11:87–98
    [Google Scholar]
  532. Oda M., Sugishita A., Furukawa K. 1988; Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon. J Bacteriol 170:3199–3205
    [Google Scholar]
  533. Ogasawara N., Moriya S., Yoshikawa H. 1983; Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res 11:6301–6318
    [Google Scholar]
  534. Ogasawara N. 1985; Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res 13:2251–2265
    [Google Scholar]
  535. Ogasawara N., Moriya S., von Meyenburg K., Hansen F. G., Yoshikawa H. 1985; Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilis and Escherichia coli . EMBO J 4:3345–3350
    [Google Scholar]
  536. Ogasawara N., Moriya S., Mazza P., Yoshikawa H. 1986; A Bacillus subtilis dnaG mutant harbours a mutation in a gene homologous to the dnaN gene of Escherichia coli . Gene 45:227–231
    [Google Scholar]
  537. Ogasawara N., Moriya S., Mazza P. G., Yoshikawa H. 1986; Nucleotide sequence and organization of dnaB gene and neighboring genes on the Bacillus subtilis chromosome. Nucleic Acids Res 14:9989–9999
    [Google Scholar]
  538. Ogasawara N., Yoshikawa H. 1992; Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol 6:629–634
    [Google Scholar]
  539. Ogasawara N., Nakai S., Yoshikawa H. 1994; Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res 1:1–14
    [Google Scholar]
  540. Ogasawara N., Fujita Y., Kobayashi Y., Sadaie Y., Tanaka T., Takahashi H., Yamane K., Yoshikawa H. 1995; Systematic sequencing of the Bacillus subtilis genome: progress report of the Japanese group. Microbiology 141:257–259
    [Google Scholar]
  541. Ogasawara N. Unpublished data.
    [Google Scholar]
  542. Ogawa K., Akagawa E., Nakamura K., Yamane K. 1995; Determination of a 21548 bp nucleotide sequence around the 24° region of the Bacillus subtilis chromosome. Microbiology 141:269–275
    [Google Scholar]
  543. Ogawa K., Akagawa E., Yamane K., Sun Z. W., LaCelle M., Zuber P., Nakano M. M. 1995; The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis . J Bacteriol 177:1409–1413
    [Google Scholar]
  544. Ogura M., Kawata-Mukai M., Itaya M., Takio K., Tanaka T. 1994; Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis . J Bacteriol 176:5673–5680
    [Google Scholar]
  545. Ogura M., Tanaka T. 1996; Transcription of Bacillus subtilis degR is σD-dependent and suppressed by multicopy proB through σD . J Bacteriol 178:216–222
    [Google Scholar]
  546. Ohmiya K., Tanaka T., Noguchi N., O’Hara K., Kono M. 1989; Nucleotide sequence of the chromosomal gene coding for the aminoglycoside 6-adenylyltransferase from Bacillus subtilis Marburg 168. Gene 78:377–378
    [Google Scholar]
  547. Okada M., Matsuzaki H., Shibuya I., Matsumoto K. 1994; Cloning, sequencing, and expression in Escherichia coli of the Bacillus subtilis gene for phosphatidylserine synthase. J Bacteriol 176:7456–7461
    [Google Scholar]
  548. Ordal G. W., Nettleton D. O., Hoch J. A. 1983; Genetics of Bacillus subtilis chemotaxis: isolation and mapping of mutations and cloning of chemotaxis genes. J Bacteriol 154:1088–1097
    [Google Scholar]
  549. Ordal G. W., Parker H. M., Kirby J. R. 1985; Complementation and characterization of chemotaxis mutants of Bacillus subtilis . J Bacteriol 164:802–810
    [Google Scholar]
  550. Osawa S., Takata R., Tanaka K., Tamaki M. 1973; Chloramphenicol resistant mutants of Bacillus subtilis . Mol Gen Genet 127:163–173
    [Google Scholar]
  551. Osawa S., Tuki A. 1978; Mapping by interspecies transformation experiments of several ribosomal protein genes near the replication origin of Bacillus subtilis chromosome. Mol Gen Genet 164:113–129
    [Google Scholar]
  552. Otozai K., Takeichi Y., Nakayama A., Yamane K., Tanimoto T., Yamasaki M., Tamura G., Nomura S., Kawamura F., Saito H. 1984; Cloning of the AROI+ gene regions of Bacillus subtilis chromosomal DNAs by B. subtilis temperate phage rholl and Escherichia coli vector systems, and a comparison of physical maps of the gene regions. J Gen Appl Microbiol 30:15–25
    [Google Scholar]
  553. Pai C. H. 1975; Genetics of biotin biosynthesis in Bacillus subtilis . J Bacteriol 121:1–8
    [Google Scholar]
  554. Paice M. G., Bourbonnais R., Desrochers M., Jurasek L., Yaguchi M. 1986; A xylanase gene from Bacillus subtilis: nucleotide sequence and comparison with B. pumilus gene. Arch Microbiol 144:201–206
    [Google Scholar]
  555. Pang A. S. -H., Nathoo S., Wong S. -L. 1991; Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis . J Bacteriol 173:46–54
    [Google Scholar]
  556. Parsot C. 1986; Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and d-serine dehydratase. EMBO J 5:3013–3019
    [Google Scholar]
  557. Parsot C., Cohen G. N. 1988; Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase. J Biol Chem 263:14654–14660
    [Google Scholar]
  558. Paveia M. H., Archer L. J. 1980; Location of genes for arabinose utilization in the Bacillus subtilis chromosome. Broteria Genet (Lisbon) 1:169–176
    [Google Scholar]
  559. Pel H. J., Rep M., Grivell L. A. 1992; Sequence comparison of new prokaryotic and mitochondrial members of the polypeptide chain release factor structure. Nucleic Acids Res 20:4423–4428
    [Google Scholar]
  560. Perego M., Hoch J. A. 1987; Isolation and sequence of the spo0E gene: its role in initiation of sporulation in Bacillus subtilis . Mol Microbiol 1:125–132
    [Google Scholar]
  561. Perego M., Ferrari E., Bassi M. T., Galizzi A., Mazza P. 1987; Molecular cloning of Bacillus subtilis genes involved in DNA metabolism. Mol Gen Genet 209:8–14
    [Google Scholar]
  562. Perego M., Hoch J. A. 1988; Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis . J Bacteriol 170:2560–2567
    [Google Scholar]
  563. Perego M., Spiegelman G. B., Hoch J. A. 1988; Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis . Mol Microbiol 2:689–699
    [Google Scholar]
  564. Perego M., Cole S. P., Burbulys D., Trach K., Hoch J. A. 1989; Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis . J Bacteriol 171:6187–6196
    [Google Scholar]
  565. Perego M., Higgins C. F., Pearce S. R., Gallagher M. P., Hoch J. A. 1991; The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5:173–185
    [Google Scholar]
  566. Perego M., Hanstein C., Welsh K. M., Djavakhishvili T., Glaser P., Hoch J. A. 1994; Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B.subtilis. Cell 79:1047–1055
    [Google Scholar]
  567. Perego M., Glaser P., Minutello A., Strauch M. A., Leopold K., Fischer W. 1995; Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis.Identification of genes and regulation. J Biol Chem 270:15598–15606
    [Google Scholar]
  568. Pestka S., Weiss D., Vince R., Wienen B., Stoffler G., Smith I. 1976; Thiostrepton-resistant mutants of Bacillus subtilis: localization of resistance to 50S subunit. Mol Gen Genet 144:235–241
    [Google Scholar]
  569. Peters H. K., Haldenwang W. G. 1994; Isolation of a Bacillus subtilis spoIIGA allele that suppresses processingnegative mutations in the pro-σ E gene (sigE). J Bacteriol 176:7763–7766
    [Google Scholar]
  570. Peterson A. M., Rutberg L. 1969; Linked transformation of bacterial and prophage markers in Bacillus subtilis 168 lysogenic for bacteriophage ø105. J Bacteriol 98:874–877
    [Google Scholar]
  571. Petricek M., Rutberg L., Hederstedt L. 1989; The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon. FEMS Microbiol Lett 61:85–88
    [Google Scholar]
  572. Petricek M., Rutberg L., Schroder I., Hederstedt L. 1990; Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol 172:2250–2258
    [Google Scholar]
  573. Phang C. H., Jeyaseelan K. 1988; Isolation and characterization of citC gene of Bacillus subtilis . In Genetics and Biotechnology of Bacilli 2 pp. 97–100 Ganesan A. T., Hoch J. A. Edited by San Diego, CA: Academic Press.;
    [Google Scholar]
  574. Phillips M. K., Hederstedt L., Hasnain S., Rutberg L., Guest J. R. 1987; Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol 169:864–873
    [Google Scholar]
  575. Piggot P. J. 1975; Characterization of a cym mutant of Bacillus subtilis . J Gen Microbiol 89:371–374
    [Google Scholar]
  576. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriol Rev 40:908–962
    [Google Scholar]
  577. Piggot P. J., Taylor S. Y. 1977; New types of mutation affecting formation of alkaline phosphatase by Bacillus subtilis . J Gen Microbiol 102:69–80
    [Google Scholar]
  578. Piggot P. J., Moir A., Smith D. A. 1981; Advances in the genetics of Bacillus subtilis differentiation. In Sporulation and Germination pp. 29–39 Levinson H. S., Sonenshein A. L., Tipper D. J. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  579. Piggot P. J., Buxton R. S. 1982; Bacteriophage PBSX- induced deletion mutants of Bacillus subtilis 168 constitutive for alkaline phosphatase. J Gen Microbiol 128:663–669
    [Google Scholar]
  580. Piggot P. J., Hoch J. A. 1985; Revised genetic linkage map of Bacillus subtilis . Microbiol Rev 49:158–179
    [Google Scholar]
  581. Piggot P. J. 1989; Revised genetic map of Bacillus subtilis 168. In Regulation of Prokaryotic Development pp. 1–41 Smith I., Slepecky R. A., Setlow P. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  582. Piggot P. J., Amjad M., Wu J. -J., Sandoval H., Castro J. 1990; Genetic and physical maps of Baciiius subtiiis 168. In Moiectilar Biology Methods for Baciilus pp. 494–532 Harwood C. R., Cutting S. M. Edited by London: Wiley;
    [Google Scholar]
  583. Piggot P. J. Unpublished data.
    [Google Scholar]
  584. Polsinelli M. 1965; Linkage relationship between genes for amino acid or nitrogenous base biosynthesis and genes controlling resistance to structurally correlated analogues. J Gen Microbiol 13:99–110
    [Google Scholar]
  585. Poluektova E. U., Lakomova N. M., Belova T. S., Prozorov A. A. 1984; Cloning of pur A16 locus in Rec+ cells of Bacillus subtilis . Genetika 20:943–948
    [Google Scholar]
  586. Pooley H. M., Karamata D. 1984; Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis . J Bacteriol 160:1123–1129
    [Google Scholar]
  587. Pooley H. M., Paschoud D., Karamata D. 1987; The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP-glucose pyrophosphorylase. J Gen Microbiol 133:3481–3493
    [Google Scholar]
  588. Pooley H. M., Abelian F. -X., Karamata D. 1991; A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol 137:921–928
    [Google Scholar]
  589. Pooley H. M., Abelian F. -X., Karamata D. 1992; CDP glycerol: poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). J Bacteriol 174:646–649
    [Google Scholar]
  590. Popham D. L., Stragier P. 1991; Cloning, characterization, and expression of the spoVB gene of Bacillus subtilis . J Bacteriol 173:7942–7949
    [Google Scholar]
  591. Popham D. L., Setlow P. 1993; Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpF gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. J Bacteriol 175:4870–4876
    [Google Scholar]
  592. Popham D. L., Setlow P. 1993; Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon which codes for penicillin-binding protein 4 and an apparent amino acid racemase. J Bacteriol 175:2917–2925
    [Google Scholar]
  593. Popham D. L., Setlow P. 1994; Cloning, nucleotide sequence, mutagenesis, and mapping of the Bacillus subtilis pbpD gene, which codes for penicillin-binding protein 4. J Bacteriol 176:7197–7205
    [Google Scholar]
  594. Popham D. L., Setlow P. 1995; Cloning, nucleotide sequence, and mutagenesis of the Bacillus subtilis pon A operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor. J Bacteriol 177:326–335
    [Google Scholar]
  595. Popham D. L., Illades-Aguiar B., Setlow P. 1995; The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J Bacteriol 177:4721–4729
    [Google Scholar]
  596. Porter A. C. G., Mandelstam J. 1982; A mutant of Bacillus subtilis secreting a DNAase inhibitor during sporulation. J Gen Microbiol 128:1903–1914
    [Google Scholar]
  597. Price C. W., Gitt M. A., Doi R. H. 1983; Isolation and physical mapping of the gene encoding the major sigma-factor of Bacillus subtilis RNA polymerase. Proc Natl Acad Sci USA 804074–4078
    [Google Scholar]
  598. Price C., Boylan S., Duncan M., Kalman S., Suh J. W., Thomas S., Van Hoy B. 1988; Use of lambda-gtll and antibody probes to isolate genes encoding RNA polymerase subunits from Bacillus subtilis . In Genetics and Biotechnology of Bacilli 2 pp. 183–188 Ganesan A. T., Hoch J. A. Edited by San Diego,CA: Academic Press;
    [Google Scholar]
  599. Price C. W. Unpublished data.
    [Google Scholar]
  600. Price V. L., Gallant J. A. 1983; Bacillus subtilis relG mutant: defect in glucose uptake. J Bacteriol 153:270–273
    [Google Scholar]
  601. Putzer H., Brakhage A. A., Grunberg-Manago M. 1990; Independent genes for two threonyl-tRNA synthetases in Bacillus subtilis . J Bacteriol 172:4593–4602
    [Google Scholar]
  602. Putzer H., Gendron N., Grunberg-Manago M. 1992; Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J 11:3117–3127
    [Google Scholar]
  603. Quax W. J., Broekhuizen C. P. 1994; Development of a new Bacillus carboxyl esterase for use in the resolution of chiral drugs. Appl Microbiol Biotechno 141:425–431
    [Google Scholar]
  604. Quinn C. L., Stephenson B. T., Switzer R. L. 1991; Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem 266:9113–9127
    [Google Scholar]
  605. Quirck P. G., Dunkley E. A. Jr Lee P., Krulwich T. A. 1993; Identification of a putative Bacillus subtilis rho gene. J Bacteriol 175:647–654
    [Google Scholar]
  606. Rabinovich P. M., Beburov M.Yu., Linevich Z. K., Stepanov A. I. 1978; Amplification of Bacillus subtilis riboflavin operon genes in Escherichia coli cells. Genetika 14:1696–1705
    [Google Scholar]
  607. Rabinovich P. M., Yomantas Yu. V., Haykinson M. Y., Stepanov A. I. 1984; Cloning of genetic material in bacilli. In Genetics and Biotechnology of Bacilli pp. 297–308 Ganesan A. T., Hoch J. A. Edited by San Diego, CA: Academic Press;
    [Google Scholar]
  608. Racine F. M., Steinberg W. 1974; Genetic location of two mutations affecting the lysyltransfer ribonucleic acid synthetase of Bacillus subtilis . J Bacteriol 120:384–389
    [Google Scholar]
  609. Ramos H. C., Boursier L., Moszer I., Kunst F., Danchin A., Glaser P. 1995; Anaerobic transcription activation in Bacillus subtilis:identification of distinct FNR-dependent and -independent regulatory mechanisms . EMBO J 14:5984–5994
    [Google Scholar]
  610. Rashid M. H., Mori M., Sekiguchi J. 1995; Glucosamin idase of Bacillus subtilis:cloning, regulation, primary structure and biochemical characterization. Microbiology 141:2391–2404
    [Google Scholar]
  611. Raugei G., Bazzicalupo M., Federici G., Gallori E. 1981; Effect of a new pyrimidine analog on Bacillus subtilis growth. J Bacteriol 145:1079–1081
    [Google Scholar]
  612. Raymond-Denise A., Guillen N. 1991; Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis . J Bacteriol 173:7084–7091
    [Google Scholar]
  613. Reeve J. N., Mendelson N. H., Coyne S. I., Hallock L. L., Cole R. M. 1973; Minicells of Bacillus subtilis . J Bacteriol 114:860–873
    [Google Scholar]
  614. Reich C., Gardiner K. J., Olsen G. J., Pace B., Marsh T. L., Pace N. R. 1986; The RNA component of the Bacillus subtilis RNase P.Sequence, activity, and partial secondary structure. J Biol Chem 261:7888–7893
    [Google Scholar]
  615. Reizer A., Deutscher J., Saier M. H. Jr Reizer J. 1991; Analysis of the gluconate (gnt) operon of Bacillus subtilis . Mol Microbiol 5:1081–1089
    [Google Scholar]
  616. Renna M. C., Najimudin N., Winik L. R., Zahler S. A. 1993; Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacterial 175:3863–3875
    [Google Scholar]
  617. Resnekov O., Melin L., Carlsson P., Mannerlov M., von Gabain A., Hederstedt L. 1992; Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol Gen Genet 234:285–296
    [Google Scholar]
  618. Resnekov O., Driks A., Losick R. 1995; Identification and characterization of sporulation gene spoVS from Bacillus subtilis . J Bacteriol 177:5628–5635
    [Google Scholar]
  619. Ricca E., Cutting S., Losick R. 1992; Characterization of bofA, a gene involved in intercompartmental regulation of pro-σ K processing during sporulation in Bacillus subtilis . J Bacteriol 174:3177–3184
    [Google Scholar]
  620. Riethdorf S., Volker U., Gerth U., Winkler A., Engelmann S., Hecker M. 1994; Cloning, nucleotide sequence, and expression of the Bacillus subtilis Ion gene. J Bacteriol 176:6518–6527
    [Google Scholar]
  621. Rima B. K., Takahashi I. 1978; Synthesis of thymidine nucleotides in Bacillus subtilis . Can J Biochem 56:158–160
    [Google Scholar]
  622. Riva S., Villani G., Mastromei G., Mazza G. 1976; Bacillus subtilis mutant temperature sensitive in the synthesis of ribonucleic acid. J Bacteriol 127:679–690
    [Google Scholar]
  623. Robison K. Unpublished data.
    [Google Scholar]
  624. Roels S., Driks A., Losick R. 1992; Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis . J Bacteriol 174:575–585
    [Google Scholar]
  625. Roels S., Losick R. 1995; Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis . J Bacteriol 177:6263–6275
    [Google Scholar]
  626. Rogolsky M. 1968; Genetic mapping of a locus which regulates the production of pigment associated with spores of Bacillus subtilis . J Bacteriol 95:2426–2427
    [Google Scholar]
  627. Ron E. Z., de Bethune M. -P., Cocito C. G. 1980; Mapping of virginiamycin S resistance in Bacillus subtilis . Mol Gen Genet 180:639–640
    [Google Scholar]
  628. Roncero M.I.G. 1983; Genes controlling xylan utilization by Bacillus subtilis . J Bacteriol 156:257–263
    [Google Scholar]
  629. Rong S., Sonenshein A. L. 1992; Mutations in the precursor region of a Bacillus subtilis sporulation sigma factor. J Bacteriol 174:3812–3817
    [Google Scholar]
  630. Rose M., Entian K. D. 1996; New genes in the 170° region of the Bacillus subtilis genome encode DNA gyrase subunits, a thioredoxin, a xylanase and an amino acid transporter. Microbiology 142: in press
    [Google Scholar]
  631. Roten C. -A. H., Brandt C., Karamata D. 1991; Genes involved in meso-diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I. J Gen Microbiol 137:951–962
    [Google Scholar]
  632. Roten C. -A. H., Brandt C., Karamata D. 1991; Identification of murA, the structural gene of phosphoenolpyru- vate: uridine-N-acetyl-glucosamine enolpyruvoyl transferase in Bacillus subtilis . In Abstracts of the 6th International Conference on Bacilli, W-8
    [Google Scholar]
  633. Rowland B., Hill K., Miller P., Driscoll J. R., Taber H. W. Unpublished data.
    [Google Scholar]
  634. Rowland B. M., Taber H. W. 1996; Duplicate isochoris- mate synthase genes of Bacillus subtilis-.regulation and involvement in the biosyntheses of menaquinone and 2,3- dihydroxybenzoate . J Bacteriol 178:854–861
    [Google Scholar]
  635. Rowland B. M., Grossman T. H., Osburn M. S., Taber H. W. Unpublished data.
    [Google Scholar]
  636. Rowland S. L., Errington J., Wake R. G. 1995; The Bacillus subtilis cell-division 135°-137° region contains an essential orf with significant similarity to murB and a dispensible sbp gene. Gene 164:113–116
    [Google Scholar]
  637. Rudner D. Z., Ladeaux J. R., Breton K., Grossman A. D. 1991; The spoOK locus of Bacillzts subtilis is homologous to the oligopeptide permease locus and is required for sporu-lation and competence. J Bacteriol 173:1388–1398
    [Google Scholar]
  638. Rudner R., Chevrestt A., Buchholz S. R., Studamire B., White A. M., Jarvis E. D. 1993; Two tRNA gene clusters associated with rRNA operons rrnD and rrnE in Bacillus subtilis . J Bacteriol 175:503–509
    [Google Scholar]
  639. Rumyantseva E. V., Sukhodolets V. V., Smirnov Yu. V. 1979; Isolation and characterization of mutants for genes of nucleoside catabolism in Bacillus subtilis . Genetika 15:594–604
    [Google Scholar]
  640. Sa-Nogueira I., Paveia H., de Lencastre H. 1988; Isolation of constitutive mutants for L-arabinose utilization in Bacillus subtilis . J Bacteriol 170:2855–2857
    [Google Scholar]
  641. Sa-Nogueira I., de Lencastre H. 1989; Cloning and characterization of araA, araB, and araD, the structural genes for d-arabinose utilization in Bacillus subtilis . J Bacteriol 171:4088–4091
    [Google Scholar]
  642. Sacco M., Ricca E., Losick R., Cutting S. 1995; An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis . J Bacteriol 177:372–377
    [Google Scholar]
  643. Sadaie Y., Takamatsu H., Nakamura K., Yamane K. 1991; Sequencing reveals similarity of the wild-type div+ gene of Bacillus sutbtilis to the Escherichia coli secA gene. Gene 98:101–105
    [Google Scholar]
  644. Sadaie Y. Unpublished data.
    [Google Scholar]
  645. Saito H., Shibata T., Ando T. 1979; Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol Gen Genet 170:117–122
    [Google Scholar]
  646. Sakaguchi R., Amano H., Shishido K. 1988; Nucleotide sequence homology of the tetracycline-resistance determinant naturally maintained in Bacillus subtilis Marburg 168 chromosome and the tetracycline-resistance gene of B.subtilis plasmid pNS1981 . Biochim Biophys Acta 950:441–444
    [Google Scholar]
  647. Sakamoto Y., Nakai S., Moriya S., Yoshikawa H., Ogasawara N. 1995; The Bacillus subtilis dnaC gene encodes a protein homologous to the DnaB helicase of Escherichia coli . Microbiology 141:641–644
    [Google Scholar]
  648. Sammons R. L., Slynn G. M., Smith D. A. 1987; Genetical and molecular studies on gerM, a new developmental locus of Bacillus subtilis . J Gen Microbiol 133:3299–3312
    [Google Scholar]
  649. Sandman K., Losick R., Youngman P. 1987; Genetic analysis of Bacillus subtilis spo mutations generated by Tn917- mediated insertional mutagenesis. Genetics 117:603–617
    [Google Scholar]
  650. Sanjanwala B., Ganesan A. T. 1991; Genetic structure and domains of DNA polymerase III of Bacillus subtilis . Mol Gen Genet 226:467–472
    [Google Scholar]
  651. Santana M., Kunst F., Hullo M. F., Rapoport G., Danchin A., Glaser P. 1992; Molecular cloning, sequencing and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 (im quinol oxidase. J Biol Chem 267:10225–10231
    [Google Scholar]
  652. Santana M., lonescu M. S., Vertes A., Longin R., Kunst F., Danchin A., Glaser P. 1994; Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176:6802–6811
    [Google Scholar]
  653. Santos M. A., de Lencastre H., Archer L. J. 1983; Bacillus subtilis mutation blocking irreversible binding of bacteriophage SSP1. J Gen Microbiol 129:3499–3504
    [Google Scholar]
  654. Saraste M., Metso T., Nakari T., Jalli T., Lauraeus M., van der Oost J. 1991; The Bacillus subtilis cytochrome-c: oxidase: variations on a conserved protein theme. Eur J Biochem 195:517–525
    [Google Scholar]
  655. Sasajima K., Kumada T. 1983; Deficiency of flagellation in Bacillus subtilis pleiotropic mutant lacking transketolase. Agric Biol Chem 47:1375–1376
    [Google Scholar]
  656. Sato T., Samori Y., Kobayashi Y. 1990; The cisA cistron of Bacillus subtilis sporulation gene spoIVC encodes a protein homologous to a site-specific recombinase. J Bacteriol 172:1092–1098
    [Google Scholar]
  657. Sato T., Harada K., Ohta Y., Kobayashi Y. 1994; Expression of the Bacillus subtilis spoIVCA gene, which encodes a site-specific recombinase, depends on the spoIIGB product. J Bacteriol 176:935–937
    [Google Scholar]
  658. Saxe C. L., Mendelson N. H. 1984; Identification of mutations associated with macrofiber formation in Bacillus subtilis . Genetics 107:551–561
    [Google Scholar]
  659. Saxild H. H., Nygaard P. 1987; Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 169:2977–2983
    [Google Scholar]
  660. Saxild H. H., Nygaard P. 1988; Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis . Mol Gen Genet 211:160–167
    [Google Scholar]
  661. Saxild H. H., Jacobsen J. H., Nygaard P. 1994; Genetic and physiological characterization of a formate-dependent 5’- phosphoribosyl-l-glycinamide transformylase activity in Bacillus subtilis . Mol Gen Genet 242:415–420
    [Google Scholar]
  662. Saxild H. H., Jacobsen J. H., Nygaard P. 1995; Functional analysis of the Bacillus subtilis purT gene encoding formate- dependent glycinamide ribonucleotide transformylase. Microbiology 141:2211–2218
    [Google Scholar]
  663. Saxild H. H., Andersen L. N., Hammer K. 1996; dra-nupC- pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by deoR encoded DeoR repressor protein. J Bacteriol 178:424–434
    [Google Scholar]
  664. Saxild H. H., Christensen L., Nygaard P., Schou S. Unpublished data.
    [Google Scholar]
  665. Schiott T. 1995; Direct submission to EMBL/GenBank/ DDBJ - X87845.
    [Google Scholar]
  666. Schmidt A., Schiesswohl M., Völker U., Hecker M., Schumann W. 1992; Cloning, sequencing, mapping and transcriptional analysis of the groESL operon from Bacillus subtilis . J Bacteriol 174:3993–3999
    [Google Scholar]
  667. Schott K., Kellermann J., Lottspeich F., Bacher A. 1990; Riboflavin synthases of Bacillus subtilis. Purification and amino acid sequence of the α subunit. J Biol Chem 265:4204–4209
    [Google Scholar]
  668. Schröder I., Hederstedt L. G., Kannangara C., Gough P. 1992; Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem J 281:843–850
    [Google Scholar]
  669. Schröder I., Johansson P., Rutberg L., Hederstedt L. 1994; The hemX gene of the Bacillus subtilis hemAXCDBL operon encodes a membrane protein, negatively affecting the steady-state cellular concentration of HemA (glutamyl-tRNA reductase). Microbiology 140:731–740
    [Google Scholar]
  670. Schuch R., Piggot P. J. 1994; The dacF-spoIIA operon of Bacillus subtilis, encoding σF, is autoregulated. J Bacteriol 176:4104–4110
    [Google Scholar]
  671. Schuch R. 1995; Direct submission to EMBL/GenBank/ DDBJ - U32685.
    [Google Scholar]
  672. Schulz A., Schumann W. 1996; hrcA, the first gene of the Bacillus subtilis dnaK operon, encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093
    [Google Scholar]
  673. Scotti C., Piatti M., Cuzzoni A., Perani P., Tognoni A., Grandi G., Galizzi A., Albertini A. M. 1993; A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130:65–71
    [Google Scholar]
  674. Scotti C., Valbuzzi A., Perego M., Galizzi A., Albertini A. M. 1996; The Bacillus subtilis genes for ribonucleotide reductase are similar to the genes for the second class 1 NrdE/NrdF enzymes of Enterobacteriaceae . Microbiology 142: (in press)
    [Google Scholar]
  675. Segall J., Losick R. 1977; Cloned Bacillus subtilis DNA containing a gene that is activated early during sporulation. Cell 11:751–761
    [Google Scholar]
  676. Seki T., Yoshikawa H., Takahashi H., Saito H. 1987; Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis . J Bacteriol 169:2913–2916
    [Google Scholar]
  677. Seki T., Yoshikawa H., Takahashi H., Saito H. 1988; Nucleotide sequence of the Bacillus subtilis phoR gene. J Bacteriol 170:5935–5938
    [Google Scholar]
  678. Sekiguchi J., Ohsu H., Kuroda A., Moriyama H., Akamatsu T. 1990; Nucleotide sequences of the Bacillus subtilis flaD locus and a B. licheniformis homologue affecting the autolysin level and flagellation. J Gen Microbiol 136:1223–1230
    [Google Scholar]
  679. Sekiguchi J., Akeo K., Yamamoto H., Khasanov F. K., Alonso J. C., Kuroda A. 1995; Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis . J Bacteriol 177:5582–5589
    [Google Scholar]
  680. Seror S. J., Casaregola S., Vannier F., Zouari N., Dahl M., Boye E. 1994; A mutant cysteinyl-tRNA synthetase affecting timing of chromosomal replication initiation in B. subtilis and conferring resistance to a protein kinase C inhibitor. EMBO J 13:2472–2480
    [Google Scholar]
  681. Seror S. J. Unpublished data
  682. Sharp P. M., Nolan N. C., Cholmain N. N., Devine K. M. 1992; DNA sequence variability at the rplX locus of Bacillus subtilis . J Gen Microbiol 138:39–45
    [Google Scholar]
  683. Sharrock R. A., Leighton T. 1981; Intergenic suppressors of temperature-sensitive sporulation in Bacillus subtilis . Mol Gen Genet 183:532–537
    [Google Scholar]
  684. Sharrock R. A., Rubenstein S., Chan M., Leighton T. 1984; Intergenic suppresssion of SpoO phenotype by the Bacillus subtilis mutation rvtA . Mol Gen Genet 194:260–264
    [Google Scholar]
  685. Shazand K., Tucker J., Chiang R., Stansmore K., Sperling-Petersen H. U., Grunberg-Manago M., Rabinowitz J. C., Leighton T. 1990; Isolation and molecular genetic charac-terization of the Bacillus subtilis gene (infB) encoding protein synthesis initiation factor 2. J Bacteriol 172:2675–2687
    [Google Scholar]
  686. Shiga Y., Yamagata H., Udaka. 1993; Characterization of the gene encoding intracellular proteinase inhibitor of Bacillus subtilis and its role for regulation of major intracellular proteinase. J Bacteriol 175:7130–7137
    [Google Scholar]
  687. Shohayeb M., Chopra I. 1987; Mutations affecting penicillin-binding proteins 2a, 2b and 3 in Bacillus subtilis alter cell shape and peptidoglycan metabolism. J Gen Microbiol 133:1733–1742
    [Google Scholar]
  688. Siccardi A. G., Lanza E., Nielsen E., Galizzi A., Mazza G. 1975; Genetic and physiological studies on the site of action of distamycin A. Antimicrob Agents Chemother 8:370–376
    [Google Scholar]
  689. Siccardi A. G., Ottolenghi S., Fortunato A., Mazza G. 1976; Pleiotropic, extragenic suppression of dna mutations in Bacillus subtilis . J Bacteriol 128:174–181
    [Google Scholar]
  690. Siegel E. C., Marmur J. 1969; Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168. J Virol 4:610–618
    [Google Scholar]
  691. Siranosian K. J., Ireton K., Grossman A. D. 1993; Alanine dehydrogenase (aid) is required for normal sporulation in Bacillus subtilis . J Bacteriol 175:6789–6796
    [Google Scholar]
  692. Slack F. J., Serror P., Joyce E., Sonenshein A. L. 1995; A gene required for nutritional repression of theBacillus subtilis dipeptide permease operon. Mol Microbiol 15:689–702
    [Google Scholar]
  693. Slock J., Stahly D. P., Han C. -Y., Six E. W., Crawford I. P. 1990; An apparentBacillus mbtifis folic acid biosynthetic operon containingpab, an amphibolictrpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J Bacteriol l72:7211–7226
    [Google Scholar]
  694. Sloma A., Ally A., Ally D., Pero J. 1988; Gene encoding a minor extracellular protease in Bacillus subtilis . J Bacteriol 170:5557–5563
    [Google Scholar]
  695. Sloma A., Rudolph C. F., Rufo G. A. Jr Sullivan B. J., Theriault K. A., Ally D., Pero J. 1990; Gene encoding a novel extracellular metalloprotease in Bacillus subtilis . J Bacteriol 172:1024–1029
    [Google Scholar]
  696. Sloma A., Rufo G. A. Jr Rudolph C. F., Sullivan B. J., Theriault K. A., Pero J. 1990; Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J Bacteriol 172:1470–1477
    [Google Scholar]
  697. Sloma A., Rufo G. A. Jr Rudolph C. F., Sullivan B. J., Theriault K. A., Pero J. 1990; Errata: Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J Bacteriol 172:5520–5521
    [Google Scholar]
  698. Sloma A., Rufo G. A. Jr Theriault K. A., Dwyer M., Wilson S. W., Pero J. 1991; Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis . J Bacteriol 173:6889–6895
    [Google Scholar]
  699. Slynn G. M., Sammons R. L., Smith D. A., Moir A., Corfe B. M. 1994; Molecular genetical and phenotypical analysis of the gerM spore germination gene of Bacillus subtilis 168. FEMS Microbiol Lett 121:315–320
    [Google Scholar]
  700. Smith I., Smith H. 1973; Location of the SP02 attachment site and the bryamycin resistance marker on the Bacillus subtilis chromosome. J Bacteriol 114:1138–1142
    [Google Scholar]
  701. Smith I., Weiss D., Pestka S. 1976; A micrococcin- resistant mutant of Bacillus subtilis: localization of resistance to the 50S subunit. Mol Gen Genet 144:231–233
    [Google Scholar]
  702. Smith I., Paress P. 1978; Genetic and biochemical characterization of kirromycin resistance mutations in Bacillus subtilis . J Bacteriol 135:1101–1117
    [Google Scholar]
  703. Smith I., Paress P., Cabane K., Dubnau E. 1980; Genetics and physiology of the rel system of Bacillus subtilis . Mol Gen Genet 178:271–279
    [Google Scholar]
  704. Smith I. 1982; The translational apparatus of Bacillus subtilis . In Molecular Biology of the Bacilli pp. 111–145 Dubnau D. A. Edited by New York: Academic Press;
    [Google Scholar]
  705. Smith K., Bayer M. E., Youngman. 1993; Physical and functional characterization of the Bacillus subtilis spoIIM gene. J Bacteriol 175:3607–3617
    [Google Scholar]
  706. Smith K., Youngman P. 1993; Evidence that the spoIIM gene of Bacillus subtilis is transcribed by RNA polymerase associated with σE . J Bacteriol 175:3618–3627
    [Google Scholar]
  707. Smith M. C. M., Mountain A., Baumberg S. 1986; Cloning in Escherichia coli of a Bacillus subtilis arginine repressor gene through its ability to confer structural stability on a fragment carrying genes of arginine biosynthesis. Mol Gen Genet 205:176–182
    [Google Scholar]
  708. Smith M. C. M., Czaplewsi L., North A. K., Baumberg S., Stockley P. G. 1989; Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli . Mol Microbiol 3:23–28
    [Google Scholar]
  709. Smith M. C. M., Mountain A., Baumberg S. 1990; Nucleotide sequence of the Bacillus subtilis argC gene encoding N-acetylglutamate-γ-semialdehyde dehydrogenase. Nucleic Acids Res 18:4595
    [Google Scholar]
  710. Soldo B., Lazarevic V., Margot P., Karamata D. 1993; Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139:3185–3195
    [Google Scholar]
  711. Soldo B., Lazarevic V., Mauël C., Karamata D. 1996; Sequence of the 305° to 307° region of the Bacillus subtilis chromosome. Microbiology 142: (in press)
    [Google Scholar]
  712. Sonenshein A. L., Alexander H. B., Rothstein D. M., Fisher S. H. 1977; Lipiarmycin-resistant ribonucleic acid polymerase mutants of Bacillus subtilis . J Bacteriol 132:73–79
    [Google Scholar]
  713. Sonenshein A. L., Alexander H. B. 1979; Initiation of transcription in vitro is inhibited by lipiarmycin. J Mol Biol 127:55–72
    [Google Scholar]
  714. Sonenshein A. L., Hoch J. A., Losick R. editors 1993 Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  715. Sonenshein A. L. Unpublished data
  716. Song B. H., Neuhard J. 1989; Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Mol Gen Genet 216:462–468
    [Google Scholar]
  717. Sorokin A., Zumstein E., Azevedo V., Ehrlich S. D., Serror P. 1993; The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol Microbiol 10:385–395
    [Google Scholar]
  718. Sorokin A., Serror P., Pujic P., Azevedo V., Ehrlich S. D. 1995; The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology 141:311–319
    [Google Scholar]
  719. Sorokin A., Azevedo V., Zumstein E., Galleron N., Ehrlich S. D., Serror P. 1996; Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome. Microbiology 142:2005–2016
    [Google Scholar]
  720. Staal S. P., Hoch J. A. 1972; Conditional dihydrostrepto-mycin resistance in Bacillus subtilis . J Bacteriol 110:202–207
    [Google Scholar]
  721. Stahl M. L., Ferrari E. 1984; Replacement of the Bacillus subtilis subtilisin structural gene with an in-vitro-derived deletion mutation. J Bacteriol 158:411–418
    [Google Scholar]
  722. Stamford N. P., Crouzet J., Cameron B., Alanine A. I., Pitt A. R., Yeliseev A. A., Battersby A. R. 1996; Biosynthesis of vitamin B12: the preparative multi-enzyme synthesis of precorrin-3A and 20-methylsirohydrochlorin (a 2,7,20-tri-methylisobacteriochlorin). Biochem J 313:335–342
    [Google Scholar]
  723. Steinberg W., Anagnostopoulos C. 1971; Biochemical and genetic characterization of a temperature-sensitive trypto- phanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis . J Bacteriol 105:6–19
    [Google Scholar]
  724. Steinmetz M., Kunst F., Dedonder R. 1976; Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus Identity of sacU, amyB and pap mutations. Mol Gen Genet 148:281–285
    [Google Scholar]
  725. Steinmetz M., LeCoq D., Aymerich S., Gonzy-Tréboul G., Gay P. 1985; The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet 200:220–228
    [Google Scholar]
  726. Steinmetz M., Aymerich S., Gonzy-Tréboul G., LeCoq D. 1988; Levansucrase induction by sucrose in Bacillus subtilis involves an antiterminator. Homology with the Escherichia coli bgl operon. In Genetics and Biotechnology of Bacilli 2: pp. 11–15 Ganesan A. T., Hoch J. A. Edited by San Diego, CA: Academic Press;
    [Google Scholar]
  727. Stephens M. A., Lang N., Sandman K., Losick R. 1984; A promoter whose utilization is temporally regulated during sporulation in Bacillus subtilis . J Mol Biol 176:333–348
    [Google Scholar]
  728. Stevens C. M., Errington J. 1990; Differential gene expression during sporulation in Bacillus subtilis: structure and regulation of the spoIIID gene. Mol Microbiol 4:543–551
    [Google Scholar]
  729. Stevens C. M., Daniel R., Illing N., Errington J. 1992; Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis . J Bacteriol 174:586–594
    [Google Scholar]
  730. Stragier P., Bouvier J., Bonamy C., Szulmajster J. 1984; A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli . Nature 312:376–378
    [Google Scholar]
  731. Stragier P., Kunkel B., Kroos L., Losick R. 1989; Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243:507–512
    [Google Scholar]
  732. Stragier P. Unpublished data
  733. Stranathan M. C., Bayles K. W., Yasbin R. E. 1990; The nucleotide sequence of the recE+ gene of Bacillus subtilis . Nucleic Acids Res 18:4249
    [Google Scholar]
  734. Strauch M. A., Aronson A. I., Brown S. W., Schreier H. J., Sonenshein A. L. 1988; Sequence of the Bacillus subtilis glutamine synthetase gene region. Gene 71:257–265
    [Google Scholar]
  735. Struck J. C. R., Vogel D. W., Ulbrich N., Erdmann V. A. A dnaZX-like open reading frame downstream from the Bacillus subtilis scRNA gene. Nucleic Acids Res 16:2720
    [Google Scholar]
  736. Struck J. C. R., Hartmann R. K., Toschka H. Y., Erdmann V. A. 1989; Transcription and processing of Bacillus subtilis small cytoplasmic RNA. Mol Gen Genet 215:478–482
    [Google Scholar]
  737. Struck J. C. R., Lempicki R. A., Toschka H. Y., Erdmann V. A., Fournier M. J. 1990; Escherichia coli 4·5S RNA gene function can be complemented by heterologous bacterial RNA genes. J Bacteriol 172:1284–1288
    [Google Scholar]
  738. Struck J. C. R., Alonso J. C., Toschka H. Y., Erdmann V. A. 1990; The Bacillus subtilis small cytoplasmic RNA gene and ‘dnaX’ map near the chromosomal replication origin. Mol Gen Genet 222:470–472
    [Google Scholar]
  739. Suh J. W., Boylan S. A., Price C. W. 1986; Gene for the α subunit of Bacillus subtilis RNA polymerase maps in the ribosomal protein gene cluster. J Bacteriol 168:65–71
    [Google Scholar]
  740. Suh J. W., Boylan S. A., Thomas S. M., Dolan K. M., Oliver D. B., Price C. W. 1990; Isolation of a secY homologue from Bacillus subtilis:evidence for a common protein export pathway in eubacteria. Mol Microbiol 4:305–314
    [Google Scholar]
  741. Sukhodolets V. V., Flyakh Ya. V., Rumyantseva E. V. 1983; Mapping of mutations in genes for nucleoside catabolism on the Bacillus subtilis chromosome. Genetika 19:221–226
    [Google Scholar]
  742. Sun D., Takahashi I. 1982; Genetic mapping of catabolite- resistant mutants of Bacillus subtilis . Can J Microbiol 28:1242–1251
    [Google Scholar]
  743. Sun D., Takahashi I. 1984; A catabolite-resistance mutation is localized in the rpo operon of Bacillus subtilis . Can J Microbiol 30:423–429
    [Google Scholar]
  744. Sun D., Stragier P., Setlow P. 1989; Identification of a new sigma-factor involved in compartmentalized gene ex-pression during sporulation of Bacillus subtilis . Genes Dev 3:141–149
    [Google Scholar]
  745. Sun D., Setlow P. 1991; Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for l-asparaginase and l-aspartase. J Bacteriol 173:3831–3845
    [Google Scholar]
  746. Sun D., Setlow P. L. 1993; Cloning, nucleotide sequence, and regulation of the Bacillus subtilis nadB gene and a nifS-Wt gene, both of which are essential for NAD biosynthesis. J Bacteriol 175:1423–1432
    [Google Scholar]
  747. Sun D., Setlow P. 1993; Cloning and nucleotide sequence of the Bacillus subtilis ansR gene which encodes a repressor of the ans operon coding for l-asparaginase and l- aspartase. J Bacteriol 175:2501–2506
    [Google Scholar]
  748. Sun G., Chesnut R., Sharkova E., Birkey S., Duggan M. F., Sorokin A., Pujic P., Ehrlich S. D., Hulett F. M. 1996; Regulation of aerobic and anaerobic respiration in Bacillus subtilis . J Bacteriol 178:1374–1385
    [Google Scholar]
  749. Sussman M. D., Setlow P. 1991; Cloning, nucleotide sequence, and regulation of the Bacillus subtilisgpr gene, which codes for the protease that initiates degradation of small, acid- soluble proteins during spore germination. J Bacteriol 173:291–300
    [Google Scholar]
  750. Sutrina S. L., Reddy P., Saier M. H. Jr Reizer J. 1990; The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265:18581–18589
    [Google Scholar]
  751. Takemaru K., Mizuno M., Sato T., Takeuchi M., Kobayashi Y. 1995; Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis . Microbiology 141:323–327
    [Google Scholar]
  752. Tam N. H., Borriss R. 1995; The thyA gene from Bacillus subtilis exhibits similarity with the phage ɸ3T thymidylate synthase gene. Microbiology 141:291–297
    [Google Scholar]
  753. Tanaka K., Tamaki M., Osawa S., Kimura A., Takata R. 1973; Erythromycin resistant mutants of Bacillus subtilis . Mol Gen Genet 127:157–161
    [Google Scholar]
  754. Tanaka T., Kawata M. 1988; Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J Bacteriol 170:3593–3600
    [Google Scholar]
  755. Todd J. A., Roberts A. N., Johnstone K., Piggot P. J., Winter G., Ellar D. J. 1986; Reduced heat resistance of mutant spores after cloning and mutagenesis of the Bacillus subtilis gene encoding penicillin-binding protein 5. J Bacteriol 167:257–262
    [Google Scholar]
  756. Tognoni A., Franchi E., Magistrelli C., Colombo E., Cosmina P., Grandi G. 1995; A putative new peptide synthase operon in Bacillus subtilis-. partial characterization. Microbiology 141:645–648
    [Google Scholar]
  757. Tolner B., Ubbink-Kok T., Poolman B., Konings W. N. 1995; Characterization of the proton/glutamate symport protein of Bacillus subtilis and its functional expression in Escherichia coli . J Bacteriol 177:2863–2869
    [Google Scholar]
  758. Toma S., Del Bue M., Pirola A., Grandi G. 1986; nprR I and nprR2 regulatory regions for neutral protease expression in Bacillus subtilis . J Bacteriol 167:740–743
    [Google Scholar]
  759. Tominaga A., Kobayashi Y. 1978; Kasugamycin-resistant mutations of Bacillus subtilis . J Bacteriol 135:1149–1150
    [Google Scholar]
  760. Tomme P., Gilkes N. R., Miller R. C., Warren A. J., Kilburn D. G. 1994; An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/ cellulase. Protein Eng 7:117–123
    [Google Scholar]
  761. Trach K., Chapman J. W., Piggot P. J., Hoch J. A. 1985; Deduced product of the stage 0 sporulation gene spoOF shares homology with the SpoOA, OmpR and SfrA proteins. Proc Natl Acad Sci USA 82:7260–7264
    [Google Scholar]
  762. Trach K., Chapman J. W., Piggot P. J., LeCoq D., Hoch J. A. 1988; Complete sequence and transcriptional analysis of the spoOF region of the Bacillus subtilis chromosome. J Bacteriol 170:4194–4208
    [Google Scholar]
  763. Trach K., Hoch J. A. 1989; The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171:1362–1371
    [Google Scholar]
  764. Trach K. A., Hoch K. A. 1993; Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol Microbiol 8:69–79
    [Google Scholar]
  765. Tran L., Wu X. -C., Wong S. -L. 1991; Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis . J Bacteriol 173:6364–6372
    [Google Scholar]
  766. Trautner T. A., Pawlek B., Bron S., Anagnostopoulos C. 1974; Restriction and modification in Bacillzts subtilis: biological aspects. Mol Gen Genet 131:181–191
    [Google Scholar]
  767. Trautner T. A., Noyer-Weidner M. 1993; Restriction/ modification and methylation systems in Bacillus subtilis, related species and their phages. In Bacillus subtilis and Other Gram-positive Bacteria pp. 539–552 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  768. Trempy J. E., Bonamy C., Szulmajster J., Haldenwang W. G. 1985; Bacillus subtilis sigma factor σ29 is the product of the sporulation-essential gene spoIIG . Proc Natl Acad Sci USA 824189–4192
    [Google Scholar]
  769. Trowsdale J., Smith D. A. 1975; Isolation, characterization, and mapping of Bacillus subtilis 168 germination mutants. J Bacteriol 123:85–95
    [Google Scholar]
  770. Trowsdale J., Chen S. M. H., Hoch J. A. 1978; Genetic analysis of phenotype revertants of spo0A mutants in Bacillus subtilis: a new cluster of ribosomal genes. In Spores VII pp. 131–135 Chambliss G., Vary J. C. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  771. Trowsdale J., Chen S. M. H., Hoch J. A. 1979; Genetic analysis of a class of polymyxin resistant partial revertants of stage 0 sporulation mutants of Bacillus subtilis: map of the chromosome region near the origin of replication. Mol Gen Genet 173:61–70
    [Google Scholar]
  772. Turner R. J., Lu Y., Switzer R. L. 1994; Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. J Bacteriol 176:3708–3722
    [Google Scholar]
  773. Van Alstyne D., Simon M. I. 1971; Division mutants of Bacillus subtilis: isolation and PBS1 transduction of division- specific markers. J Bacteriol 108:1366–1379
    [Google Scholar]
  774. Van Dijl J. M., de Jong A., Vehmaanpera J., Venema G., Bron S. 1992; Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11:2819–2828
    [Google Scholar]
  775. Van Hoy B. E., Hoch J. A. 1990; Characterization of the spoIVB and recN loci of Bacillus subtilis . J Bacteriol 172:1306–1311
    [Google Scholar]
  776. Van Sinderen D., Galli G., Cosmina P., de Ferra F., Withoff S., Venema G., Grandi G. 1993; Characterization of the srfA locus of Bacillus subtilis: only the valine-activating domain of srfA is involved in the establishment of genetic competence. Mol Microbiol 8:833–841
    [Google Scholar]
  777. Van Sinderen D., ten Berge A., Hayema B. J., Hamoen L., Venema G. 1994; Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis . Mol Microbiol 11:695–703
    [Google Scholar]
  778. Van Sinderen D., Venema G. 1994; comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis . J Bacteriol 176:5762–5770
    [Google Scholar]
  779. Van Sinderen D., Luttinger A., Kong L., Dubnau D., Venema G., Hamoen L. 1995; comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis . Mol Microbiol 15:455–462
    [Google Scholar]
  780. Van Sinderen D., Kiewiet R., Venema G. 1995; Differential expression of two closely related deoxyribonuclease genes,nucA and nucB in Bacillus subtilis . Mol Microbiol 15:213–223
    [Google Scholar]
  781. Van Sinderen D., Withoff S., Boels H., Venema G. 1990; Isolation and characterization of comE, a transcription unit involved in competence development of Bacillus subtilis . Mol Gen Genet 224:396–404
    [Google Scholar]
  782. Van der Oost C., von Wachenfeld C., Hederstedt L., Saraste M. 1991; Bacillus subtilis cytochrome oxidase mutants : biochemical analysis and genetic evidence for two aa3-type oxidases. Mol Microbiol 5:2063–2072
    [Google Scholar]
  783. Vander Horn P. B., Zahler S. A. 1992; Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis . J Bacteriol 174:3928–3935
    [Google Scholar]
  784. Vandeyar M. A., Zahler S. A. 1986; Chromosomal insertions of Tni9/7 in Bacillus subtilis . J Bacteriol 167:530–534
    [Google Scholar]
  785. Vapnek D., Greer S. 1971; Minor threonine dehydratase encoded within the threonine synthetic region of Bacillus subtilis . J Bacteriol 106:983–993
    [Google Scholar]
  786. Vapnek D., Greer S. 1971; Suppression by derepression in threonine dehydratase-deficient mutants of Bacillus subtilis . J Bacteriol 106:615–625
    [Google Scholar]
  787. Varley A., Stewart G. C. 1992; The DivIV region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (MinCD) and cell shape determinants. J Bacteriol 174:6729–6742
    [Google Scholar]
  788. Varon D., Boylan S. A., Okamoto K., Price C. W. 1993; Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor σB . J Bacteriol 175:3964–3971
    [Google Scholar]
  789. Vazquez-Ramos J. M., Mandelstam J. 1981; Oxolinic acid-resistant mutants of Bacillus subtilis . J Gen Microbiol 127:1–9
    [Google Scholar]
  790. Viaene A., Dhaese P. 1989; Sequence of the glycer-aldehyde-3-phosphate dehydrogenase gene from Bacillus sub-tilis. Nucleic Acids Res 17:1251
    [Google Scholar]
  791. Völker U., Dufour A., Haldenwang W. G. 1995; The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of σB . J Bacteriol 177:114–122
    [Google Scholar]
  792. Vold B. S. 1985; Structure and organization of genes for transfer RNA in Bacillus subtilis . Microbiol Rev 49:71–80
    [Google Scholar]
  793. Von Wachenfeldt C., Hederstedt L. 1990; Bacillus subtilis 13-kilodalton cytochrome c-550 encoded by cccA consists of a membrane-anchor and a heme domain. J Biol Chem 265:13939–13948
    [Google Scholar]
  794. Vosman B., Kuiken G., Kooistra J., Venema G. 1988; Transformation in Bacillus subtilis: involvement of the 17-kilodalton DNA-entry nuclease and the competence-specific 18-kilodalton protein. J Bacteriol 170:3703–3710
    [Google Scholar]
  795. Wabiko H., Ochi K., Nguyen D. M., Allen E. R., Freese E. 1988; Genetic mapping and physiological consequences of metE mutations of Bacillus subtilis . J Bacteriol 170:2705–2710
    [Google Scholar]
  796. Wahl R., Rice P., Rice C. M., Kroeger M. 1994; ECD - a totally integrated database of Escherichia coli . Nucleic Acids Res 22:3450–3455
    [Google Scholar]
  797. Wainscott V. J., Kane J. F. 1976; Dihydrofolate reductase in Bacillus subtilis . In Microbiology - 1976 pp. 208–213 Schlessinger D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  798. Walter J., Noyer-Weidner M., Trautner T. A. 1990; The amino acid sequence of the CCGG-recognizing DNA methyl-transferase M.BsuFl: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J 9:1007–1013
    [Google Scholar]
  799. Walton D. A., Moir A., Morse R., Roberts I., Smith D. A. 1984; The isolation of a λ phage carrying DNA from the histidine and isoleucine-valine regions of the Baciilus subtdis chromosome. J Gen Microbiol 130:1577–1586
    [Google Scholar]
  800. Wang G. F., Kuriki T., Roy K. L., Kaneda T. 1993; The primary structure of branched-chain α-oxo-acid-dehydrogen- ase from Bacillus subtilis and its similarity to other α-oxo-acid dehydrogenasese. Eur J Biochem 213:1091–1099
    [Google Scholar]
  801. Wang L. -F., Price C. W., Doi R. H. 1985; Bacillus subtilis dnaE encodes a protein homologous to DNA primase of Escherichia coli . J Biol Chem 260:3368–3372
    [Google Scholar]
  802. Wang L. -F., Doi R. H. 1986; Nucleotide sequence and organization of Bacillus subtilis RNA polymerase major sigma (σ43). Nucleic Acids Res 14:4293–4307
    [Google Scholar]
  803. Wang L. -F., Doi R. H. 1990; Complex character of senS, a novel gene regulating expression of extracellular-protein genes of Bacillus subtilis . J Bacteriol 172:1939–1947
    [Google Scholar]
  804. Warburg R. J., Moir A. 1981; Properties of a mutant of Bacillus subtilis 168 in which spore germination is blocked at a late stage. J Gen Microbiol 124:243–253
    [Google Scholar]
  805. Warburg R. J., Mahler I., Tipper D. J., Halvorson H. O. 1984; Cloning the Bacilluls subtilis 168 aroC gene encoding dehydroquinase. Gene 32:57–66
    [Google Scholar]
  806. Ward J. B. Jr Zahler S. A. 1973; Genetic studies of leucine biosynthesis in Bacillus subtilis . J Bacteriol 116:719–726
    [Google Scholar]
  807. Abe A., Koide H., Kohno T., Watabe K. 1995; A Bacillus subtilis spore coat polypeptide gene, cot S . Microbiology 141:1433–1442
    [Google Scholar]
  808. Wawrousek E. F., Hansen J. N. 1983; Structure and organization of a cluster of six tRNA genes in the space between tandem ribosomal RNA gene sets in Bacillus subtilis . J Biol Chem 258:291–298
    [Google Scholar]
  809. Wawrousek E. F., Narasimhan N., Hansen J. N. 1984; Two large clusters with thirty-seven transfer RNA genes adjacent to ribosomal RNA gene sets in Bacillus subtilis.sequence and organization of trrnD and trrnE gene clusters. J Biol Chem 259:3694–3702
    [Google Scholar]
  810. Webb C. D., Decatur A., Teleman A., Losick R. 1995; Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis . J Bacteriol 177:5906–5911
    [Google Scholar]
  811. Weinrauch Y., Guillen N., Dubnau D. A. 1989; Sequence and transcription mapping of Bacillus subtilis competence genes comB and com A, one of which is related to a family of bacterial regulatory determinants. J Bacteriol 171:5362–5375
    [Google Scholar]
  812. Weinrauch Y., Penchev R., Dubnau E., Smith I., Dubnau D. 1990; A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev 4:860–872
    [Google Scholar]
  813. Weng M., Nagy P. L., Zalkin H. 1995; Identification of the Bacillus subtilis pur operon repressor. Proc Natl Acad Sci USA 927455–7459
    [Google Scholar]
  814. Wetzstein M., Schumann W. 1990; Nucleotide sequence of a Bacillus subtilis gene homologous to the grpE gene of E.coli located immediately upstream of the dnaK gene. Nucleic Acids Res 18:1289
    [Google Scholar]
  815. Wetzstein M., Völker V., Dedio J., Löbau S., Zuber P., Schiesswohl M., Herget C., Hecker M., Schumann W. 1992; Cloning, sequencing and molecular analysis of the dnaK locus from Bacillus subtilis . J Bacteriol l74:3300–3310