1887

Abstract

QUTA is a positively acting regulatory protein that regulates the expression of the eight genes comprising the quinic acid utilization gene gene cluster in It has been proposed that the QUTA protein is composed of two domains that are related to the N-terminal two domains-dehydroquinate (DHQ) synthase and 5-pyruvyl shikimate-3-phosphate (EPSP) synthase - of the pentadomain AROM protein. The AROM protein is an enzyme catalysing five consecutive steps in the shikimate pathway, two of which are common to the pathway. A genetic and molecular analysis of non-inducible mutants showed that all 23 mutations analysed map within the N-terminal half of the encoded QUTA protein. One dominant mutation introduces a stop codon at the boundary between the two domains that were identified on the basis of amino acid sequence alignments between the QUTA protein and the N-terminal two domains of the pentafunctional AROM protein. The truncated protein encoded by mutant has DNA-binding ability but no transcription activation function. A second dominant mutation (in strain is missense, changing 457E K in a region of localized high negative charge and potentially identifies a transcription activation domain in the N-terminus of the EPSP-synthase-like domain of the QUTA protein. A series of qualitative and quantitative Northern blot experiments with mRNA derived from wild-type and mutant strains supported the view that the QUTA protein regulates the expression of the gene cluster, including the gene which encodes it. A series of Western blot and zinc-binding experiments demonstrated that a putative zinc binuclear cluster motif located within the N-terminus of the QUTA protein is able to bind zinc

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-87
1996-01-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-87.html?itemId=/content/journal/micro/10.1099/13500872-142-1-87&mimeType=html&fmt=ahah

References

  1. Anton I. A., Duncan K., Coggins J. R. 1987; A eukaryotic repressor protein, the qa-IS gene product of Neurospora crassa, is homologous to part of the AROM multifunctional enzyme. J Mol Biol 197:367–371
    [Google Scholar]
  2. Barbosa M. S., Lowry D. R., Schiller J. T. 1989; Papilloma virus polypeptides E6 and E7 are zinc-binding proteins. J Virol 63:1404–1407
    [Google Scholar]
  3. Beri R. K., Whittington H., Roberts C. F., Hawkins A. R. 1987; Isolation and characterisation of the positively acting regulatory gene QUTA from Aspergillus nidulans. Nucleic Acids Res 15:7991–8001
    [Google Scholar]
  4. Beri R. K., Grant S., Roberts C. F., Smith M., Hawkins A. R. 1990; Selective overexpression of the QUTE gene encoding catabolic 3-dehydroquinase in multicopy transformants of Aspergillus nidulans. Biochem J 265:337–342
    [Google Scholar]
  5. Biggin M. D., Gibson T. S., Hong C. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci USA 86:3963–3965
    [Google Scholar]
  6. Bugg T. D. H., Alefounder P. R., Abell C. 1991; An amino acid sequence motif observed amongst enzymes of the shikimate pathway. Biochem J 276:841–843
    [Google Scholar]
  7. Burnette N. W. 1981; ‘Western blotting’: electrophoretic transfer of proteins from sodium dodecyl sulphate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203
    [Google Scholar]
  8. Cathala G., Savouret J. F., Mendez B., West B. L., Karin B., Martial J. A., Baxter J. D. 1983; A method for isolation of intact translationally active ribonucleic acid. DNA 2:329–335
    [Google Scholar]
  9. Charles I. G., Keyte J. W., Brammar W. J., Smith M., Hawkins A. R. 1986; The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Res 14:2201–2213
    [Google Scholar]
  10. Geever R. F., Huiet L, Baum J. A., Tyler B. M., Patel N. D., Rutledge B. J., Case M. E., Giles N. H. 1989; DNA sequence, organisation and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol 207:15–34
    [Google Scholar]
  11. Grant S., Roberts C. F., Lamb H. K., Stout M., Hawkins A. R. 1988; Genetic regulation of the quinic acid utilization (qut) gene cluster in Aspergillus nidulans. J Gen Microbiol 134:347–358
    [Google Scholar]
  12. Grewe R., Haendler H. 1966; 5-Dehydroquinic acid. Biochem Prep 11:21–26
    [Google Scholar]
  13. Hawkins A. R. 1987; The complex arom locus of Aspergillus nidulans: evidence for multiple gene fusions and convergent evolution. Curr Genet 11:491–498
    [Google Scholar]
  14. Hawkins A. R., Lamb H. K. 1995; The molecular biology of multidomain proteins. Selected examples. Eur J Biochem 232:7–18
    [Google Scholar]
  15. Hawkins A. R., Smith M. 1991; Domain structure and interaction within the pentafunctional AROM polypeptide. Eur J Biochem 196:717–724
    [Google Scholar]
  16. Hawkins A. R., Da Silva A. J., Roberts C. F. 1985; Cloning and characterisation of the three enzyme structural genes qutB, qutC and qutE, from the quinic acid utilisation gene cluster in Aspergillus nidulans. Curr Genet 9:305–311
    [Google Scholar]
  17. Hawkins A. R., Lamb H. K., Smith M., Keyte J. W., Roberts C. F. 1988; Molecular organisation of the quinic acid utilisation (qut) gene cluster in Aspergillus nidulans. Mol & Gen Genet 214:224–231
    [Google Scholar]
  18. Hawkins A. R., Lamb H. K., Roberts C. F. 1992; Structure of the Aspergillus nidulans qut repressor-encoding gene: implications for the regulation of transcription initiation. Gene 110:109–114
    [Google Scholar]
  19. Hawkins A. R., Lamb H. K., Moore J. D., Charles I. G., Roberts C. F. 1993a; The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects. J Gen Microbiol 139:2891–2899
    [Google Scholar]
  20. Hawkins A. R., Lamb H. K., Moore J. D., Roberts C. F. 1993b; Genesis of eukaryotic transcriptional activator and repressor proteins by splitting a multidomain anabolic enzyme. Gene 136:49–54
    [Google Scholar]
  21. Hawkins A. R., Moore J. D., Adeokun A. M. 1993c; Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans and the overproduction of the type II 3-dehydroquinase from Neurospora crassa. Biochem J 296:451–457
    [Google Scholar]
  22. Hawkins A. R., Lamb H. K., Radford A. R., Moore J. D. 1994; Evolution of transcription-regulating proteins by enzyme recruitment: molecular models for nitrogen metabolite repression and ethanol utilisation in eukaryotes. Gene 146:145–158
    [Google Scholar]
  23. Kinghorn J. R., Hawkins A. R. 1982; Cloning and expression in Escherichia coli K-12 of the biosynthetic dehydroquinase function of the arom cluster gene from the eukaryote Aspergillus nidulans. Mol & Gen Genet 186:145–152
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 111:680–685
    [Google Scholar]
  25. Lamb H. K., Hawkins A. R., Smith M., Harvey I. J., Brown J., Turner G., Roberts C. F. 1990; Spatial and biological characterisation of the complete quinic acid utilisation gene cluster in Aspergillus nidulans. Mol & Gen Genet 223:17–23
    [Google Scholar]
  26. Lamb H. K., Bagshaw C. R., Hawkins A. R. 1991; In vivo overproduction of the pentafunctional AROM polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. Mol & Gen Genet 227:187–196
    [Google Scholar]
  27. Lamb H. K., van den Hombergh J. P. T. W., Newton G. H., Moore J. D., Roberts C. F., Hawkins A. R. 1992; Differential flux through the quinate and shikimate pathways: implications for the channeling hypothesis. Biochem J 284:181–187
    [Google Scholar]
  28. Lamb H. K., Moore J. D., Lakey J. H., Levett L., Wheeler K. A., Lago H., Coggins J. R., Hawkins A. R. 1995; Comparative analysis of the QUTR transcription repressor protein and the three C-terminal domains of the pentafunctional AROM enzyme. Biochem J in press
    [Google Scholar]
  29. Leuther K. K., Salmeron J. M., Johnston S. A. 1993; Genetic evidence that an activation domain of GAL4 does not require acidity and may form a /?-sheet. Cell 72:575–585
    [Google Scholar]
  30. Mackay K., Lund A. M., Raghunath M., Steinmann B., Dalgleish R. 1993; SSCP detection of a Gly 56 Val substitution in the Pro-alpha 1 (I) collagen chain resulting in osteogenesis imperfecta type II. Human Genet 91:439–444
    [Google Scholar]
  31. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Moore J. D., Hawkins A. R. 1993; Overproduction of, and interaction within, bi-functional domains from the amino and carboxy termini of the pentafunctional AROM protein of Aspergillus nidulans. Mol & Gen Genet 240:92–102
    [Google Scholar]
  33. Moore J. D., Lamb H. K., Garbe T, Servos S, Dougan G., Charles I. G., Hawkins A. R. 1992; Inducible overproduction of the Aspergillus nidulans pentafunctional AROM protein and the type I and II 3-dehydroquinases from Salmonella typhi and Mycobacterium tuberculosis. Biochem J 287:173–181
    [Google Scholar]
  34. Moore J. D., Hawkins A. R., Charles I. G., Deka R., Coggins J. R., Cooper A., Kelly S., Price N. C. 1993; Characterisation of the type I dehydroquinase from Salmonella typhi. Biochem J 295:277–285
    [Google Scholar]
  35. Moore J. D., Coggins J. R., Virden R., Hawkins A. R. 1994; Efficient independent activity of a monomeric monofunctional dehydroquinase synthase derived from the N-terminus of the pentafunctional AROM protein of Aspergillus nidulans. Biochem J 301:297–304
    [Google Scholar]
  36. Orita M, Suzuki Y, Sekiya T., Hayashi K. 1989; Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879
    [Google Scholar]
  37. Samson A. C. R. 1986; Anomalous behaviour of Newcastle disease virus haemagglutinin-neuraminidase protein in western blotting analysis of monoclonal antibody binding sites. J Gen Virol 67:1199–1203
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  39. Sharrocks A. D. 1994; A T7 expression vector for producing N-and C-terminal fusion proteins with glutathione j'-transferase. Gene 138:105–108
    [Google Scholar]
  40. Studier E. W., Rosenberg A. H., Dunn J. J., Dubendorf J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89
    [Google Scholar]
  41. Van den Hombergh J. P. T. W., Moore J. D., Charles I. G., Hawkins A. R. 1992; Overproduction in Escherichia coli of the dehydroquinate synthase domain of the Aspergillus nidulans pentafunctional AROM protein. Biochem J 284:861–867
    [Google Scholar]
  42. Van Hoy M., Leuther K. K., Kodadek T., Johnston S. A. 1993; The acidic activation domains of the GCN4 and GAL4 proteins are not helical but form j3-sheets. Cell 72:587–594
    [Google Scholar]
  43. Whittington H. A., Grant S., Roberts C. F., Hawkins A. R. 1987; Identification and isolation of a putative permease gene in the quinic acid utilisation (qut) gene cluster of Aspergillus nidulans. Curr Genet 12:135–139
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-87
Loading
/content/journal/micro/10.1099/13500872-142-1-87
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error