1887

Abstract

gave rise to β-haemolytic variants (Bhp for beta-haemolysin production) at frequencies of 10-10 on agar medium containing washed horse erythrocytes. Bhp variants reverted to the wild-type α-haemolytic phenotype (Bhp) at the same frequencies. There was a significant probability (> 0.1) that phase variation in Bhp and phase variation in the previously described Spp (sucrose promoted phenotype) would occur concomitantly, but there was no correlation between these phenotypes. There was evidence also of independent phase variation in adhesion to saliva-coated hydroxyapatite (Asp for adhesion to salivary pellicles), in lactose-sensitive coaggregation (Cls for coaggregation, lactose-sensitive) and in the concentrations of particular cell surface antigens (Cap for cell antigen profile) in strains that had undergone phase changes in Spp and/or Bhp. Phase variation in all these phenotypes were transitions between high and low levels of activity and each appeared to occur as an independent event. Significant associations ⩽ 0.0001 by contingency table analysis) between particular phenotypes such as Bhp and Asp and between Asp, Cls and Cap phenotypes, however, were apparent. The results suggest that cells become predisposed to phase variation and that the resulting independent phenotypic changes may give rise to phenotypically diverse streptococcal populations able to accommodate rapid and transient environmental changes in the mouth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-181
1996-01-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-181.html?itemId=/content/journal/micro/10.1099/13500872-142-1-181&mimeType=html&fmt=ahah

References

  1. Appelbaum B., Golub E., Holt S., Rosan B. 1979; In vitro studies of dental plaque formation: adsorption of oral streptococci to hydroxyapatite. Infect Immun 25:717–728
    [Google Scholar]
  2. Bayliss R., Clarke C., Oakley C. M., Somerville W., Whitfield A. G. W. 1983a; The teeth and infective endocarditis. Br Heart J 50:506–512
    [Google Scholar]
  3. Bayliss R., Clarke C., Oakley C. M., Somerville W., Young S. E. J. 1983b; The microbiology and pathogenesis of infective endocarditis. Br Heart J 50:513–519
    [Google Scholar]
  4. Clark W., Bammann L., Gibbons R. 1978; Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun 19:846–853
    [Google Scholar]
  5. Clewell D. B., Yagi Y., Dunny G. M., Schultz S. K. 1974; Characterisation of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J Bacteriol 117:283–289
    [Google Scholar]
  6. Demuth D. R., Davis C. A., Corner A. M., Lamont R. J., Leboy P. S., Malamud D. 1988; Cloning and expression of a Streptococcus sanguis surface antigen that interacts with a human salivary agglutinin. Infect Immun 56:2484–2490
    [Google Scholar]
  7. Erickson P. R., Herzberg M. C. 1990; Purification and partial characterisation of a 65-kDa platelet aggregation-associated protein antigen from the surface of Streptococcus sanguis. J Bacteriol 265:14080–14087
    [Google Scholar]
  8. Fenno J.C., LeBlanc D., Fives-Taylor P. 1989; Nucleotide sequence analysis of a type 1 fimbrial gene of Streptococcus gordonii FW213. Infect Immun 57:3527–3533
    [Google Scholar]
  9. Frandsen E. V. G., Pedrazzoli V., Kilian M. 1991; Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6:129–133
    [Google Scholar]
  10. Ganeskunar N., Song M., McBride B. C. 1988; Cloning of a Streptococcus sanguis adhesin which mediates binding to saliva-coated hydroxyapatite. Infect Immun 56:1150–1157
    [Google Scholar]
  11. Gibbons R. J., van Houte J. 1975; Bacterial adherence in oral microbial ecology. Annu Rev Microbiol 29:19–44
    [Google Scholar]
  12. Gibbons R. J., Hay D. I., Schlesinger D. H. 1991; Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun 59:2945–2954
    [Google Scholar]
  13. Haisman R. J., Jenkinson H. F. 1991; Mutants of Streptococcus gordonii Challis over-producing glucosyltransferase. J Gen Microbiol 137:483–489
    [Google Scholar]
  14. Hamada S., Torii M., Tsuchitani Y., Kotani S. 1980; Isolation and immunobiological classification of Streptococcus sanguis from human tooth surfaces. J Clin Microbiol 12:243–249
    [Google Scholar]
  15. Hudson M. C., Curtiss R. 1990; Regulation of expression of Streptococcus mutans genes important to virulence. Infect Immun 58:464–470
    [Google Scholar]
  16. Jenkinson H. F. 1986; Cell-surface proteins of Streptococcus sanguis associated with cell hydrophobicity and coaggregation properties. J Gen Microbiol 132:1575–1589
    [Google Scholar]
  17. Jenkinson H. F. 1992; Adherence, coaggregation, and hydrophobicity of Streptococcus gordonii associated with expression of cell surface lipoproteins. Infect Immun 60:1225–1228
    [Google Scholar]
  18. Jenkinson H. F., Terry S. D., McNab R., Tannock G. W. 1993; Inactivation of the gene encoding surface protein SspA in Streptococcus gordonii DL1 affects cell interactions with human salivary agglutinin and oral actinomyces. Infect Immun 61:3199–3208
    [Google Scholar]
  19. Kolenbrander P. E., London J. 1993; Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252
    [Google Scholar]
  20. Kolenbrander P. E., Anderson R. N., Moore L. V. H. 1990; Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonisation of the tooth surface. Appl Environ Microbiol 56:3890–3894
    [Google Scholar]
  21. Kolenbrander P. E., Andersen R. N., Ganeshkumar N. 1994; Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-binding cassette. Infect Immun 62:4469–1480
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  23. Lamont R. J., Rosan B., Baker C. T., Nelson G. M. 1988; Characterization of an adhesin antigen of Streptococcus sanguis G9B. Infect Immun 56:2417–2423
    [Google Scholar]
  24. Lamont R. J., Gil S., DeMuth D. R., Malamud D., Rosan B. 1994; Molecules of Streptococcus gordonii that bind to Porphyromonas gingivalis. Microbiology 140:867–872
    [Google Scholar]
  25. Lawson J., Gooder H. 1970; Growth and development of competence in group H streptococci. J Bacteriol 102:820–825
    [Google Scholar]
  26. Markwell M. A. K., Hass S. M., Bieber L. L., Talbot N. E. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 187:206–210
    [Google Scholar]
  27. Mclntire F.C., Vatter A. E., Baros J., Arnold J. 1978; Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infect Immun 21:978–988
    [Google Scholar]
  28. Miller J. F., Mekalanos J. J., Falkow S. 1989; Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243:916–922
    [Google Scholar]
  29. Morris E. J., McBride B. C. 1984; Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites. Infect Immun 43:656–663
    [Google Scholar]
  30. Murphy G. L., Conned T. D., Barritt D. S., Koomey M., Cannon J. C. 1989; Phase variation of gonococcal protein II: regulation of gene expression by slipped strand mispairing of a repetitive DNA sequence. Cell 56:539–547
    [Google Scholar]
  31. Nyvad B., Kilian M. 1987; Microbiology of the early colonisation of human enamel and root surfaces in vivo. Scand J Dent Res 96:369–380
    [Google Scholar]
  32. Nyvad B., Kilian M. 1990; Comparison of the initial streptococcal microflora on dental enamel in caries active and in caries-inactive individuals. Caries Res 24:267–272
    [Google Scholar]
  33. Parker M. T., Ball L. C. 1976; Streptococci and aerococci associated with systemic infection in man. J Med Microbiol 9:275–302
    [Google Scholar]
  34. Raina J. L., Macrina F. L. 1982; A competence specific inducible protein promotes in vivo recombination in Streptococcus sanguis. Mol & Gen Genet 185:21–29
    [Google Scholar]
  35. Rosan B., Baker C. T., Nelson G. N., Berman R., Lamont R. J., Demuth D. R. 1989; Cloning and expression of an adhesin antigen of Streptococcus sanguis G9B in Escherichia coli. J Gen Microbiol 135:531–538
    [Google Scholar]
  36. Scannapieco F. A., Haraszthy G. G., Cho M. I., Levine M. J. 1992; Characterization of an amylase-binding component of Streptococcus gordonii G9B. Infect Immun 60:4726–4733
    [Google Scholar]
  37. Seifert H. S., Ajioka R. S., Marchal C., Sparling P. F., So M. 1988; DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336:392–395
    [Google Scholar]
  38. Sommer P., Gleyzal C., Guerret S., Etienne J., Grimaud J. A. 1992; Induction of a putative laminin-binding protein of Streptococcus gordonii in human infective endocarditis. Infect Immun 60:360–365
    [Google Scholar]
  39. Stibitz S., Aaronson W., Monack D., Falkow S. 1989; Phase variation in Bordetellapertussis by frameshift mutations in a gene for a novel two-component system. Nature 338:266–269
    [Google Scholar]
  40. Sulavik M. C. 1992 Regulation of glucosyltransferase in Streptococcus gordonii PhD thesis University of Michigan; Ann Arbor, MI, USA:
    [Google Scholar]
  41. Sulavik M.C., Tardiff G., Clewell D. B. 1992; Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J Bacteriol 174:3577–3586
    [Google Scholar]
  42. Swanson J., Morrison S., Barrera O., Hill S. 1990; Piliation changes in transformation-defective gonococci. J Exp Med 171:2131–2139
    [Google Scholar]
  43. Tardiff G., Sulavik M., Jones G. W., Clewell D. B. 1989; Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun 57:3945–3948
    [Google Scholar]
  44. Vacca-Smith A. M., Jones C. A., Levine M. J., Stinson M. W. 1994; Glucosyltransferase mediates adhesion of Streptococcus gordonii to human endothelial cells in vitro. Infect Immun 62:2187–2194
    [Google Scholar]
  45. Vickerman M. M., Jones G. W. 1992; Adhesion of glucosyltransferase phase variants to Streptococcus gordonii bacterium–glucan substrata may involve lipoteichoic acid. Infect Immun 60:4301–4308
    [Google Scholar]
  46. Vickerman M. M., Jones G. W. 1995; Sucrose-dependent accumulation of oral streptococci and their adhesion-defective mutants on saliva-coated hydroxyapatite. Oral Microbiol Immunol 10:175–182
    [Google Scholar]
  47. Vickerman M. M., Clewell D. B., Jones G. W. 1991a; Sucrosepromoted accumulation of growing glucosyltransferase variants of Streptococcus gordonii on hydroxyapatite surfaces. Infect Immun 59:3523–3530
    [Google Scholar]
  48. Vickerman M. M., Clewell D. B., Jones G. W. 1991b; Ecological implications of glucosyltransferase phase variation in Streptococcus gordonii. Appl Environ Microbiol 57:3648–3651
    [Google Scholar]
  49. Vickerman M. M., Clewell D. B., Jones G. W. 1992; Glucosyltransferase phase variation in Streptococcus gordonii modifies adhesion to saliva-coated hydroxyapatite surfaces in a sucrose-independent manner. Oral Microbiol Immunol 7:118–120
    [Google Scholar]
  50. Vickerman M. M., Sulavik M. C., Clewell D. B. 1995; Molecular analysis of Streptococcus gordonii glucosyltransferase phase variation. Genetics of Streptococci, Enterococci and Lactococci309–314 Edited by Ferretti J. J., Gilmore M. S., Klaenhammer T. R. Basel: Karger;
    [Google Scholar]
  51. Wolff L., Liljemark W. F. 1978; Observation of beta-hemolysis among three strains of Streptococcus mutans. Infect Immun 19:745–748
    [Google Scholar]
  52. Woltjes J., de Graff J. 1983; Virulence of beta-hemolytic and non-hemolytic Streptococcus mutans: lethal dose determination in neonatal mice. Antonie Leeuwenhoek 49:352–360
    [Google Scholar]
  53. Woltjes J., Legdeur-Velthuis H., de Graff J. 1981; Detection and characterisation of hemolysin production in Streptococcus mutans. Infect Immun 31:850–855
    [Google Scholar]
  54. Woltjes J., Legdeur-Velthuis H., Eggink C. O., de Graff J. 1982; Beta-hemolysis and pigment production by the oral bacterium Streptococcus mutans. Arch Oral Biol 27:279–281
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-181
Loading
/content/journal/micro/10.1099/13500872-142-1-181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error