1887

Abstract

Sequences of the three integral membrane subunits (subunits a, b and c) of the F sector of the proton-translocating F-type (FF-) ATPases of bacteria, chloroplasts and mitochondria have been analysed. All homologous-sequenced proteins of these subunits, comprising three distinct families, have been identified by database searches, and the homologous protein sequences have been aligned and analysed for phylogenetic relatedness. The results serve to define the relationships of the members of each of these three families of proteins, to identify regions of relative conservation, and to define relative rates of evolutionary divergence. Of these three subunits, c-subunits exhibited the slowest rate of evolutionary divergence, b-subunits exhibited the most rapid rate of evolutionary divergence, and a-subunits exhibited an intermediate rate of evolutionary divergence. The results allow definition of the relative times of occurrence of specific events during evolutionary history, such as the intragenic duplication event that gave rise to large c-subunits in eukaryotic vacuolar-type ATPases after eukaryotes diverged from archaea, and the extragenic duplication of F-type ATPase b-subunits that occurred in bluegreen bacteria before the advent of chloroplasts. The results generally show that the three F subunits evolved as a unit from a primordial set of genes without appreciable horizontal transmission of the encoding genetic information although a few possible exceptions were noted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-17
1996-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-17.html?itemId=/content/journal/micro/10.1099/13500872-142-1-17&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Anraku Y., Umemoto N., Hirata R., Wada Y. 1989; Structure and function of the yeast vacuolar membrane proton ATPase. J Bioenerg Biomembr 21:589–603
    [Google Scholar]
  3. Birkenhager R., Hoppert M., Deckershebestreit G., Mayer F., Altendorf K. 1995; The F-0 complex of the Escherichia coli ATP synthase - investigation by electron spectroscopic imaging and immunoelectron microscopy. Eur J Biochem 230:58–67
    [Google Scholar]
  4. Both B., Kaim G., Wolters J., Schleifer K. H., Stackebrandt E., Ludwig W. 1991; Propionigenium modestum: a separate line of descent within the bacteria. FEMS Microbiol Lett 62:53–58
    [Google Scholar]
  5. Brusilow W. S. A. 1993; Assembly of the Escherichia coli ATPase, a large multimeric membrane-bound enzyme. Mol Microbiol 9:419–424
    [Google Scholar]
  6. Cross R. L., Taiz L. 1990; Gene duplication as a means for altering H+/ATP ratios during the evolution of F0F1 ATPases and synthases. FEBS Lett 259:227–229
    [Google Scholar]
  7. Dayhoff M. O., Barker W. C., Hunt L. T. 1983; Establishing homologies in protein sequences. Methods Enzymol 91:524–545
    [Google Scholar]
  8. Denda K., Konishi J., Hajiro K., Oshima T., Date T., Yoshida M. 1990; Structure of an ATPase operon of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biol Chem 265:21509–21513
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  10. Dmitriev O., Deckers-Hebestreit G., Altendorf K. 1993; ATP synthesis energized by DpNa and Dy in proteoliposomes containing the F0F1 ATPase from Propionigenium modestum. J Biol Chem 268:14776–14780
    [Google Scholar]
  11. Doolittle R. F. 1986 Of Urfs and Orfs: a Primer on How to Analyse Derived Amino Acid Sequences Mill Valley, CA: University Science Books;
    [Google Scholar]
  12. Doolittle R. F., Feng D.-F. 1990; A nearest neighbor procedure for relating progressively aligned amino acid sequences. Methods Enzymol 183:659–669
    [Google Scholar]
  13. Dunn S. D. 1992; The polar domain of the b subunit of Escherichia coli F1F0-ATPase forms an elongated dimer that interacts with the F1 sector. J. Biol Chem 267:7630–7636
    [Google Scholar]
  14. Feng D.-F., Doolittle R. F. 1990; Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183:375–387
    [Google Scholar]
  15. Foster D. L., Fillingame R. H. 1982; Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J Biol Chem 257:2009–2015
    [Google Scholar]
  16. Fraga D., Hermolin J., Fillingame R.H. 1994; Transmembrane helix-helix interactions in F0 suggested by suppressor mutations to Ala24 → Asp/Asp61 → Gly mutant of ATP synthase subunit c. J Biol Chem 269:2562–2567
    [Google Scholar]
  17. Futai M., Noumi T., Maeda M. 1989; ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem 58:111–136
    [Google Scholar]
  18. Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T., Konishi J., Denda K., Yoshida M. 1989a; Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665
    [Google Scholar]
  19. Gogarten J. P., Rausch T., Bernasconi P., Kibak H., Taiz L. 1989b; Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and bacteria. Z Nat Forsch Sect C J Biosci 44:641–650
    [Google Scholar]
  20. Gogarten J. P., Starke T., Kibak H., Fishmann J., Taiz L. 1992; Evolution and isoforms of V-ATPase subunits. J Exp Biol 172:137–147
    [Google Scholar]
  21. Gray M. W. 1988; Organelle origins and ribosomal RNA. Biochem Cell Biol 66:325–348
    [Google Scholar]
  22. Gutell R. R., Larsen N., Woese C. R. 1994; Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26
    [Google Scholar]
  23. Hassinen I. E., Vuokila P. T. 1993; Reaction of dicyclo-hexylcarbodiimide with mitochondrial proteins. Biochim Biophys Acta 1144:107–124
    [Google Scholar]
  24. Hatefi Y. 1993; ATP synthesis in mitochondria. Eur J Biochem 218:759–767
    [Google Scholar]
  25. Kibak H., Taiz L, Starke T., Bernasconi P., Gogarten J. P. 1992; Evolution of structure and function of V-ATPases. J Bioenerg Biomembr 24:415–424
    [Google Scholar]
  26. Kluge C., Dimroth P. 1992; Studies on Na+ and H+ translocation through the F0 part of the Na+-translocating F1F0 ATPase from Propionigenium modestum: discovery of a membrane potential dependent step. Biochemistry 31:12665–12672
    [Google Scholar]
  27. Kluge C., Dimroth P. 1993; Specific protection by Na+ or Li+ of the F1F0-ATPase of Propionigenium modestum from the reaction with dicyclohexylcarbodiimide. J Biol Chem 268:14557–14560
    [Google Scholar]
  28. Krawiec S., Riley M. 1990; Organization of the bacterial chromosome. Microbiol Rev 54:502–539
    [Google Scholar]
  29. Krebs M. P., Khorana H. G. 1993; Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol 175:1555–1560
    [Google Scholar]
  30. Laubinger W., Dimroth P. 1988; Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry 27:7531–7537
    [Google Scholar]
  31. Malmstrfim B. G. 1989; The mechanism of proton translocation in respiration and photosynthesis (the third Datta lecture). FEBS Lett 250:9–21
    [Google Scholar]
  32. Mandel M., Moriyama Y., Hulmes J. D., Pan Y. C., Nelson H., Nelson N. 1988; cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc Natl Acad Sci USA 85:5521–5524
    [Google Scholar]
  33. Mitchell P. 1979; Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems (the ninth Sir Hans Krebs lecture). Eur J Biochem 95:1–20
    [Google Scholar]
  34. Monticello R. A., Angov E., Brusilow W. S. A. 1992; Effects of inducing expression of cloned genes for the F0 proton channel of the Escherichia coli F1F0, ATPase. J Bacteriol 174:3370–3376
    [Google Scholar]
  35. Nelson N. 1989; Structure, molecular genetics, and evolution of vacuolar H+-ATPases. J Bioenerg Biomembr 21:553–571
    [Google Scholar]
  36. Nelson N. 1994; Energizing porters by proton-motive force. J Exp Biol 196:7–13
    [Google Scholar]
  37. Nelson N., Taiz L. 1989; The evolution of H+-ATPases. Trends Biochem Sci 14:113–116
    [Google Scholar]
  38. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6
    [Google Scholar]
  39. Pao G. M., Saier M. H. Jr 1994; The N-terminal, putative, mitochondrial targeting domain of the mitochondrial genome maintenance protein (MGM1) in yeast is homologous to the bacterial ribonuclease inhibitor, barstar. Mol Biol Evol 11:964–965
    [Google Scholar]
  40. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448
    [Google Scholar]
  41. Pedersen P. L., Amzel L. M. 1993; ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature's most unique machines. J Biol Chem 268:9937–9940
    [Google Scholar]
  42. Reizer J., Reizer A., Saier M. H. Jr 1994; A functional superfamily of sodium/solute symporters. Biochim Biophys Acta 1197:133–166
    [Google Scholar]
  43. Riley M. 1993; Functions of the gene products of Escherichia coli. Microbiol Rev 57:862–952
    [Google Scholar]
  44. Saier M. H. Jr 1994; Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93
    [Google Scholar]
  45. Saier M. H. Jr, Werner P., Milller M. 1989; Insertion of proteins into bacterial membranes: mechanism, characteristics and comparisons with the eukaryotic process. Microbiol Rev 53:333–366
    [Google Scholar]
  46. Saier M. H. Jr, Fagan M. J., Hoischen C., Reizer J. 1993; Transport mechanisms. Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics133–156 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Schneider E., Altendorf K. 1984; Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensible for H+ translocation and binding of the water-soluble F1 moiety. Proc Natl Acad Sci USA 81:7279–7283
    [Google Scholar]
  48. Schneider E., Altendorf K. 1985; All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP synthase ((F1F0). EMBO J 4:515–518
    [Google Scholar]
  49. Schneider E., Altendorf K. 1987; Bacterial adenosine 5-triphosphate synthase (F1F0): Purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol Rev 51:477–497
    [Google Scholar]
  50. Senior A. E. 1990; The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem 19:7–41
    [Google Scholar]
  51. Serrano R. 1988; Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947:1–28
    [Google Scholar]
  52. Smith D. W. 1988; A complete, yet flexible, system for DNAJ protein sequence analysis using VAX/VMS computers. Comput Appl Biosci 4:212
    [Google Scholar]
  53. Solioz M., Davies K. 1994; Operon of vacuolar-type Na+-ATPase of Enterococcus hiriae. J Biol Chem 269:9453–9459
    [Google Scholar]
  54. Stokes D. L., Nakamoto R. K. 1994; Structures of P-type and F-type ion pumps. Curr Opin Struct Biol 4:197–203
    [Google Scholar]
  55. Stone D. K., Crider B. P., SUdhof T. C., Xie X.-S. 1989; Vacuolar proton pumps. J Bioenerg Biomembr 21:605–620
    [Google Scholar]
  56. Takase K., Kakinuma S., Yamato I., Konishi K., Igarashi K., Kakinuma Y. 1994; Sequencing and characterization of the ntp gene cluster for vacuolar-type Na+-translocating ATPase of Enterococcus hirae. J Biol Chem 269:11037–11044
    [Google Scholar]
  57. Van Rosmalen M., Saier M. H. Jr 1993; Structural and evolutionary relationships among two families of bacterial peri-plasmic chaperone proteins which function cooperatively in fimbrial assembly. Res Microbiol 144:507–527
    [Google Scholar]
  58. Vik S. B., Dao N. N. 1992; Prediction of transmembrane topology of F0 proteins from Escherichia coli F1F0 ATP synthase using variational and hydrophobic moment analyses. Biochim Biophys Acta 1140:199–207
    [Google Scholar]
  59. Walker J. E. 1994; The regulation of catalysis in ATP synthase. Curr Opin Struct Biol 4:912–918
    [Google Scholar]
  60. Walker J. E., Runswick M. J., Saraste M. 1982; Subunit equivalence in Escherichia coli and bovine heart mitochondria FjF0 ATPases. FEBS Lett 146:393–396
    [Google Scholar]
  61. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  62. Wu L-F., Saier M. H. Jr 1990; Nucleotide sequence of the fruA gene, encoding the fructose permease of the Rhodobacter capsulatus phosphotransferase system, and analyses of the deduced protein sequence. J Bacteriol 172:7167–7178
    [Google Scholar]
  63. Yokoyama K., Oshima T., Yoshida M. 1990; Thermus thermophilus membrane-associated ATPase. Indication of a bacterial V-type ATPase. J Biol Chem 265:21946–21950
    [Google Scholar]
  64. Yokoyama K., Akabane Y., Ishii N., Yoshida M. 1994; Isolation of prokaryotic V0V1-ATPase from a thermophilic eubac-terium Thermus thermophilus. J Biol Chem 269:12248–12253
    [Google Scholar]
  65. Zhang Y., Fillingame R. H. 1994; Essential aspartate in subunit c of F1F0 ATP synthase. Effect of position 61 substitutions in helix-2 on function of Asp24 in helix-1. J Biol Chem 269:5473–5479
    [Google Scholar]
  66. Zim´nyi L, V´ró G., Chang M., Ni B., Needleman R., Lanyi J. K. 1992; Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry 31:8535–8543
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-17
Loading
/content/journal/micro/10.1099/13500872-142-1-17
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error