Physiological responses of KT2442 to phosphate starvation Free

Abstract

The physiological responses of KT2442 to phosphate starvation were examined with respect to cell morphology, qualitative demonstration of the accumulation of the intracellular storage component poly-3-hydroxyalkanoate (PHA), cellular ATP and ribosome content, and the rate of total protein synthesis. Upon prolonged incubation under phosphate-limiting conditions, the number of viable cells decreased by two to three orders of magnitude during the first 3 weeks. However, after this decline, viability of the cultures remained remarkably constant for many weeks. The cells remained rod-shaped under phosphate starvation conditions with a tendency to swell in parallel with the accumulation of PHA. Protein synthesis and ribosome concentration were gradually reduced, and ATP levels dropped to very low values after the onset of starvation; later, however, there was a return to near-normal ATP concentrations. Evidence was obtained that the strong selective pressure imposed by phosphate deprivation forces the selection of mutants with a competitive advantage. These mutants are able to grow, possibly utilizing nutrients derived from dead cells, and eventually take over the cultures. One frequently encountered mutant formed smaller colonies on rich solidified medium and displayed an altered cell morphology. This mutant was isolated and further characterized. By employing a bioluminescence-based marker system, we demonstrated that this mutant is able to replace wild-type cells in mixed culture experiments. Thus, long-term phosphate-deprived cultures represent dynamic regimes that can undergo population shifts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-155
1996-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-155.html?itemId=/content/journal/micro/10.1099/13500872-142-1-155&mimeType=html&fmt=ahah

References

  1. Amy P. S., Pauling C., Morita R. Y. 1983; Starvation-survival process of a marine Vibrio. Appl Environ Microbiol 45:1041–1048
    [Google Scholar]
  2. Anba J., Bidaud M., Vasil M. L., Lazdunski A. 1990; Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. J Bacteriol 172:4685–4689
    [Google Scholar]
  3. Bagdasarian M., Lurz B., Ruckert B., Franklin F. C. H., Bagda-Sarian M. M., Frey J., Timmis K. N. 1981; Specific-purpose plasmid cloning vectors. II Broad host range, high copy number, RSFlOlO-derived vectors for gene cloning in Pseudomonas. Gene 16:237–247
    [Google Scholar]
  4. Chapman A. G., Fall L., Atkinson D. E. 1971; Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108:1072–1086
    [Google Scholar]
  5. Clark J. D., Maaloe O. 1967; DNA replication and the cell division cycle in Escherichia coli. J Mol Biol 23:99–112
    [Google Scholar]
  6. Davis B. D., Luger S. M., Tai P. C. 1986; Role of ribosome degradation in the death of starved Escherichia coli cells. J Bacteriol 166:439–445
    [Google Scholar]
  7. Dawe L. L., Penrose W. R. 1978; ‘Bactericidal’ property of seawater: death or deliberation?. Appl Environ Microbiol 35:829–833
    [Google Scholar]
  8. De Weger L. A., Dekkers L. C., van der Bij A. J., Lugtenberg J. J. 1993; Use of phosphate-reporter bacteria to study phosphate limitation in the rhizosphere and bulk soil. Mol Plant-Microbe Interact 7:32–38
    [Google Scholar]
  9. FlSrdh K., Cohen P. S., Kjelleberg S. 1992; Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol 174:6780–6788
    [Google Scholar]
  10. Givskov M., Eberl L., Moller S., Poulsen L. K., Molin S. 1994a; Response to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape and macromolecular content. J Bacteriol 176:7–14
    [Google Scholar]
  11. Givskov M., Eberl L., Molin S. 1994b; Responses to nutrient starvation in Pseudomonas putida strain KT2442: two-dimensional electrophoretic analysis of starvation and stress inducible proteins. J Bacteriol 176:4816–4824
    [Google Scholar]
  12. Hamilton R. D., Holm-Hansen O. 1967; Adenosine triphosphate content of marine bacteria. Eimnol Oceanogr 12:319–324
    [Google Scholar]
  13. Hancock R. E. W., Poole K., Benz R. 1982; Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. J Bacteriol 150:730–738
    [Google Scholar]
  14. Holm-Hansen O., Booth C. R. 1966; The measurement of adenosine triphosphate in the ocean and its ecological significance. Eimnol Oceanogr 11:150–159
    [Google Scholar]
  15. Huijberts G. N. M., de Rijk T. C., de Waard P., Eggink G. 1994; 13C-Nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxy-alkanoate) synthesis. J Bacteriol 176:1661–1666
    [Google Scholar]
  16. Huisman G. W., de Leeuw O., Eggink G., Witholt B. 1989; Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954
    [Google Scholar]
  17. Huisman G. W., Wonink E., Meima R., Kazemier B., Terpstra P., Withold B. 1991; Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198
    [Google Scholar]
  18. Kato J., Ito A., Nikata T., Ohtake H. 1992; Phosphate taxis in Pseudomonas aeruginosa. J Bacteriol 174:5149–5151
    [Google Scholar]
  19. Klemm P., Christiansen G. 1987; Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae. Mol & Gen Genet 208:439–445
    [Google Scholar]
  20. Kogure K., Simidu U., Taga N. 1979; A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420
    [Google Scholar]
  21. Kolter R., Siegele D. A., Tormo A. 1993; The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874
    [Google Scholar]
  22. Kristensen C. S., Eberl L., Sanches-Romero J. M., Givskov M., Molin S., de Lorenzo V. 1995; Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J Bacteriol 177:52–58
    [Google Scholar]
  23. Kurath G., Morita R. Y. 1983; Starvation-survival physiological studies of a marine Pseudomonas sp. Appl Environ Microbiol 45:1206–1211
    [Google Scholar]
  24. Lange R., Hengge-Aronis R. 1991; Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59
    [Google Scholar]
  25. McCann M. P., Kidwell J. P., Matin A. 1991; The putative a factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173:4188–4194
    [Google Scholar]
  26. Moller S., Kristensen C. S., Poulsen L. K., Carstensen J. M., Molin S. 1995; Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters. Appl Environ Microbiol 61:741–748
    [Google Scholar]
  27. Neidhardt F.C., Bloch P. L., Smith D. F. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  28. Nystrom T., Olssen R. M., Kjelleberg S. 1992; Survival, stress resistance and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol 58:55–65
    [Google Scholar]
  29. Oliver J. D., Stringer W. F. 1984; Lipid composition of a psychrophilic marine Vibrio sp. during starvation-induced morphogenesis. Appl Environ Microbiol 47:461–466
    [Google Scholar]
  30. Ostroff R. M., Vasil M. L. 1987; Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J Bacteriol 169:4597–4601
    [Google Scholar]
  31. Pang H., Winkler H. H. 1994; The concentration of stable RNA in Rickettsia prowa^ekii. Mol Microbiol 12:115–120
    [Google Scholar]
  32. Poole K., Hancock R. E. W. 1984; Phosphate transport in Pseudomonas aeruginosa: involvement of a periplasmatic phosphate-binding protein. Eur J Biochem 144:607–612
    [Google Scholar]
  33. Roth W. G., Leckie M. P., Dietzler D. N. 1988; Restoration of colony-forming activity in osmotically stressed Escherichia coli by betaine. Appl Environ Microbiol 54:3142–3146
    [Google Scholar]
  34. Sample E.C., Soper R. J., Raez G. J. 1980; Reactions of phosphate fertilizers in soils. The Role of Phosphate in Agriculture263310 Edited by Khasawneh F. E., Sample E. C., Kamprath E. J. Madison, WI: American Society of Agronomy;
    [Google Scholar]
  35. Siegele D. A., Almirdn M., Kolter R. 1993; Approaches to the study of survival and death in stationary phase Escherichia coli. Starvation in Bacteria151–169 Edited by Kjelleberg S. New York: Plenum Press;
    [Google Scholar]
  36. Stouthamer H. A. 1973; A theoretical study of the amount of ATP required for synthesis of microbial cell material. Antonie van Eeeuwenhoek. J Microbiol Serol 39:545–565
    [Google Scholar]
  37. Tanaka K., Takayanasi Y., Fujita N., Ishihama A., Takahashi H. 1993; Heterogeneity of principal sigma factor in Escherichia coli: the rpoS gene product tx38, is a principal sigma factor of RNA polymerase in stationary phase Escherichia coli. Proc Natl Acad Sci USA 90:3511–3515
    [Google Scholar]
  38. Wanner B. 1987; Phosphate regulation of gene expression in E. coli. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology Vol. 21326–1333 Edited by Neidhardt F. C., Ingraham J. L., Magasanik B., Low K. B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Zambrano M. M., Siegele D. A., Almirtin M., Tormo A., Kolter R. 1993; Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259:1757–1760
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-155
Loading
/content/journal/micro/10.1099/13500872-142-1-155
Loading

Data & Media loading...

Most cited Most Cited RSS feed