1887

Abstract

DNA from a region downstream of and overlapping the polyketide synthase (PKS) gene cluster for jadomycin B biosynthesis in was cloned and sequenced. Analysis of the nucleotide sequence located one complete ORF (ORF6), an incomplete one representing the 3' region of ORF4 in the PKS cluster, and a second incomplete one (ORF7). The deduced amino acid sequences for ORFs 6 and 7 resemble those of oxygenases. Since a plausible biosynthetic pathway for jadomycin B includes an angular polyketide intermediate that undergoes oxidative ring fission before condensation with an amino acid, we subcloned one of the presumptive oxygenase genes (ORF6) in a segregationally unstable shuttle vector (pHJL400) and disrupted it by inserting the gene for apramycin resistance. Transformation of with the disruption vector and selection for apramycin resistance gave mutants blocked in jadomycin biosynthesis. Southern hybridization confirmed that gene replacement had occurred. Cultures of the mutants accumulated a metabolite identified by comparison with an authentic sample as rabelomycin, a non-nitrogenous polyketide-derived antibiotic originally isolated from

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-123
1996-01-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-123.html?itemId=/content/journal/micro/10.1099/13500872-142-1-123&mimeType=html&fmt=ahah

References

  1. Ayer S. W., Mclnnes A. G., Thibault P., Walter J. A., Doull J.L., Parnell T., Vining L. C. 1991; Jadomycin, a novel 8H-benz[b]oxazolo[3,2-f]phenanthridine antibiotic from Streptomyces venezuelae ISP5230. Tetrahedron Lett 32:6301–6304
    [Google Scholar]
  2. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein-coding sequences. Gene 30:157–166
    [Google Scholar]
  3. Blanco G., Pereda A., Brian P., Mendez C., Chater K. F., Salas J. A. 1993; A hydroxylase-like gene product contributes to synthesis of a polyketide spore pigment in Streptomyces halstedii. J Bacteriol 175:8043–8048
    [Google Scholar]
  4. Caballero J.L., Martinez E., Malpartida F., Hopwood D. A. 1991; Organization and functions of the actVA region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor. Mol & Gen Genet 230:401–412
    [Google Scholar]
  5. Carter P., Bedovelle H., Winter G. 1985; Improved oligonucleotide site-directed mutagenesis using Ml3 vectors. Nucleic Acids Res 13:4431–4443
    [Google Scholar]
  6. Decker H., Motamedi H., Hutchinson C. R. 1992; Nucleotide sequences and heterologous expression of tcmG and tcmP, biosynthetic genes for tetracenomycin C in Streptomyces glaucescens. J Bacteriol 175:3876–3886
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  8. Doull J.L., Ahmed Z., Stuttard C., Vining L. C. 1985; Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J Gen Microbiol 131:97–104
    [Google Scholar]
  9. Doull J. L., Ayer S. W., Singh A. K., Thibault P. 1993; Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot 46:869–871
    [Google Scholar]
  10. Doull J.L., Singh A. K., Hoare M., Ayer S. W. 1994; Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 13:120–125
    [Google Scholar]
  11. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. 1990; Rubredoxin reductase of Pseudomonas oleovorans: structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol 212:135–142
    [Google Scholar]
  12. Fernandez-Moreno M. A., Martinez E., Caballero L. J., Ichinose K., Hopwood D. A., Malpartida F. 1994; DNA sequence and functions of the actVl region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). J Biol Chem 269:24854–24863
    [Google Scholar]
  13. Han L., Yang K., Ramalingam E., Mosher R. H., Vining L. C. 1994; Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140:3379–3389
    [Google Scholar]
  14. Haydock S. F., Dowson J. A., Dhillon N., Roberts G. A., Cortes J., Leadlay P. F. 1991; Cloning and sequence analysis of the genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea. Sequence similarities between eryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol & Gen Genet 230:120–128
    [Google Scholar]
  15. Hong Y.S., Hwang C. K., Hong S.K., Kim Y. H., Lee J. J. 1994; Molecular cloning and characterization of the aklavinone 11-hydroxylase gene of Streptomyces peucetius subsp. caesius ATCC 27952. J Bacteriol 176:7096–7101
    [Google Scholar]
  16. Hopwood D. A., Sherman D. H. 1990; Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66
    [Google Scholar]
  17. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  18. Hopwood D. A., Chater K. F., Bibb M. J. 1994; Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Genetics and Biochemistry of Antibiotic Production65–102 Edited by Vining L. C., Stuttard C. Newton, MA: Butterworth-Heinemann;
    [Google Scholar]
  19. Hutchinson C. R. 1994; Anthracyclines. Genetics and Biochemistry of Antibiotic Production331–357 Edited by Vining L. C., Stuttard C. Newton, MA: Butterworth-Heinemann;
    [Google Scholar]
  20. Imamura N., Kakinuma K., Ikekawa N., Tanaka H., Omura S. 1982; Biosynthesis of vineomycins A1 and B2. J Antibiot 35:602–608
    [Google Scholar]
  21. Khosla C., McDaniel R., Ebert-Khosla S., Torres R., Sherman D. H., Bibb M. J., Hopwood D. A. 1993; Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins. J Bacteriol 175:2197–2204
    [Google Scholar]
  22. Kieser T. 1984; Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. Plasmid 12:290–296
    [Google Scholar]
  23. Kim E.S., Hopwood D. A., Sherman D. H. 1994; Analysis of type II polyketide β-ketoacyl synthase specificity in Streptomyces coelicolor A3(2) by trans complementation of actinorhodin synthase mutants. J Bacteriol 176:1801–1804
    [Google Scholar]
  24. Krohn K., Khanbabaee K. 1994; First total synthesis of (+) -rabelomycin. Angew Chem Int Ed Engl 33:99–100
    [Google Scholar]
  25. Larson J. L., Hershberger C. L. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15:199–209
    [Google Scholar]
  26. Liu W.-C., Parker W.L., Slusarchyk D. S., Greenwood D.L., Graham S. F., Meyers E. 1970; Isolation, characterization and structure of rabelomycin, a new antibiotic. J Antibiot 23:437–441
    [Google Scholar]
  27. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. 1993; Engineered biosynthesis of novel polyketides. Science 262:1546–1550
    [Google Scholar]
  28. MacNeil D. J., Gewain K. M., Rudy C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68
    [Google Scholar]
  29. Nebert D. W., Gonzales F. J. 1987; P450 genes: structure, evolution and regulation. Annu Rev Biochem 56:945–993
    [Google Scholar]
  30. Niemi J., Mäntsälä P. 1995; Nucleotide sequences and expression of genes from Streptomyces purpurascens that cause the production of new anthracyclines in Streptomycesgalilaeus. J Bacteriol 177:2942–2945
    [Google Scholar]
  31. Nurk A., Kasak L., Kivisaar M. 1991; Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonasputida. Gene 102:13–18
    [Google Scholar]
  32. Omer C. A., Lenstra R., Litle P. J., Dean C., Tepperman J. M., Leto K. J., Romesser J. A., O'Keefe D. P. 1990; Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus. J Bacteriol 172:3335–3345
    [Google Scholar]
  33. Orser C. S., Lange C. C., Xun L., Zahrt T. C., Schneider B. J. 1993; Cloning, sequence analysis, and expression of the Flavo bacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416
    [Google Scholar]
  34. Perkins E. J., Gordon M. P., Caceres O., Lurquin P. F. 1990; Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2351–2359
    [Google Scholar]
  35. Poulos T.L., Finzel B. C., Howard A. J. 1987; High-resolution crystal structure of cytochrome P450CAM. J Mol Biol 195:687–700
    [Google Scholar]
  36. Rohr J., Thiericke R. 1992; Angucycline group antibiotics. Nat Prod Rep 9:103–137
    [Google Scholar]
  37. Rohr J., Beale J. M., Floss H. G. 1989; Urdamycins, new angucycline antibiotics from Streptomyces fradiae. IV. Biosynthetic studies of urdamycins A-D. J Antibiot 42:1151–1157
    [Google Scholar]
  38. Russel M., Model P. 1988; Sequence of thioredoxin reductase from Escherichia coli: relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem 263:9015–9019
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  41. Shen B., Hutchinson C. R. 1993a; Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Science 262:1535–1540
    [Google Scholar]
  42. Shen B., Hutchinson C. R. 1993b; Tetracenomycin F2 cyclase: intramolecular aldol condensations in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 32:11149–11154
    [Google Scholar]
  43. Sherman D. H., Kim E.S., Bibb M. J., Hopwood D. A. 1992; Functional replacement of genes for individual polyketide synthase components in Streptomyces coelicolor A3(2) by heterologous genes from a different polyketide pathway. J Bacteriol 174:6184–6190
    [Google Scholar]
  44. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  45. Stanzak R., Matsushima P., Baltz R. H., Rao R. N. 1986; Cloning and expression in Streptomyces lividans of clustered erythromycin biosynthesis genes from Streptomyces erythreus. Bio J Technology 4:229–232
    [Google Scholar]
  46. Stassi D., Donadio S., Staver M. J., Katz L. 1993; Identification of a Saccharopolyspora erythraea gene required for the final hy-droxylation step in erythromycin biosynthesis. J Bacteriol 175:182–189
    [Google Scholar]
  47. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. J Gen Microbiol 12:115–121
    [Google Scholar]
  48. Summers R. G., Wendt-Pienkowski E., Motamedi H., Hutchinson C. R. 1993; The tcmVI region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens encodes the tetracenomycin Fl monooxygenase, tetracenomycin F2 cyclase and, most likely, a second cyclase. J Bacteriol 175:7571–7580
    [Google Scholar]
  49. Weber J. M., Leung J. O., Swanson S. J., Idler K. B., McAlpine J. B. 1991; An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 252:114–116
    [Google Scholar]
  50. Wierenga R. K., Terpstra P., Hoi W. G. J. 1985; Interaction of pyrophosphate moieties with α-helices in dinucleotide binding proteins. J Mol Biol 24:1346–1357
    [Google Scholar]
  51. Wierenga R. K., Terpstra P., Hoi W. G. J. 1986; Prediction of the occurrence of the ADP-binding β-α-β fold in proteins using an amino acid fingerprint. J Mol Biol 187:101–107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-123
Loading
/content/journal/micro/10.1099/13500872-142-1-123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error