1887

Abstract

Increasing the expression of various glycolytic operons in caused a significant decrease rather than increase in the glycolytic flux and growth rate. Because the relative decrease depended on the amount of overexpressed protein, and was independent of which enzyme was overexpressed, we attributed it to a protein burden effect. More specifically, we examined if the decrease in glycolytic flux could be explained by a decreased concentration of other glycolytic enzymes (for which glucokinase was used as a marker enzyme). Using the summation theorem of metabolic control theory we predicted the extent of this protein burden effect. The predictions were in good agreement with the experimental observations. This suggests that the negative flux control is caused either by a simple competition of the overexpressed gene with the expression of all other genes or by simple dilution. Furthermore, we determined the implications of protein burden for the determination of the extent to which an enzyme limits a flux. We conclude that a protein burden can cause a significant underestimation of the flux control coefficient, especially if the enzyme under investigation is a highly expressed enzyme.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-9-2329
1995-09-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/9/mic-141-9-2329.html?itemId=/content/journal/micro/10.1099/13500872-141-9-2329&mimeType=html&fmt=ahah

References

  1. Algar E.M., Scopes R.K. 1985; Studies on cell-free metabolism: ethanol production by extracts of Zymomonas mobilis.. J Biotechnol 2:275–287
    [Google Scholar]
  2. An H., Scopes R.K., Rodriguez M., Keshav K.F., Ingram L.O. 1991; Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein.. J Bacteriol 173:7227–7240
    [Google Scholar]
  3. Andrews K.J., Hegeman G.D. 1976; Selective disadvantage of non-functional protein synthesis in Escherichia coli.. J Mol Evol 8:317–328
    [Google Scholar]
  4. Arfman N.A., Worrell V., Ingram L.O. 1992; Use of the tac promoter and laclq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis.. J Bacteriol 174:7370–7378
    [Google Scholar]
  5. Bailey J.E. 1993; Host-vector interactions in Escherichia coli.. Adv Biochem Eng 48:29–52
    [Google Scholar]
  6. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  7. Brown G.C. 1991; Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells.. J Theor Biol 153:195–203
    [Google Scholar]
  8. Burns J.A., Cornish-Bowden A., Groen A.K., Heinrich R., Kacser H., Porteous J.W., Rapoport S.M., Rapoport T., Stucki J.W., Tager J.M., Wanders R.J.A., Westerhoff H.V. 1985; Control analysis of metabolic systems.. Trends Biochem Sci 10:16
    [Google Scholar]
  9. Chao Y.-P., Patnaik R.R., Roof W.D., Young R.F., Liao J.C. 1993; Control of gluconeogenic growth by pps and pck in Escherichia coli.. J Bacteriol 175:6939–6944
    [Google Scholar]
  10. De Hollander J.A. 1994; Optimization of product formation in a microbial fermentation process.. In Biothermokinetics pp. 405–413 Edited by Westerhoff H. V. Andover: Intercept;
    [Google Scholar]
  11. Diamond J.M. 1986; Why do disused proteins become genetically lost or repressed?. Nature 321:565–566
    [Google Scholar]
  12. Dong H., Nilsson L., Kurland C.G. 1995; Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction.. J Bacteriol 177:1497–1504
    [Google Scholar]
  13. Dykhuizen D.E., Hartl D.L. 1983; Selection in chemostats.. Microbiol Rev 47:150–168
    [Google Scholar]
  14. Fell D.A. 1992; Metabolic control analysis: a survey of its theoretical and experimental development.. Biochem J 286:313–330
    [Google Scholar]
  15. Groen A.K., Wanders R.J.A., Westerhoff H.V., van der Meer R., Tager J.M. 1982; Quantification of the contribution of various steps to the control of mitochondrial respiration.. J Biol Chem 257:2754–2757
    [Google Scholar]
  16. Heinrich R., Rapoport T.A. 1974; A linear steady-state treatment of enzymatic chains.General properties, control and effector strength.. Eur J Biochem 42:89–95
    [Google Scholar]
  17. Jensen K.F., Pedersen S. 1990; Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components.. Microbiol Rev 54:89–100
    [Google Scholar]
  18. Jensen P. R., Michelsen O., Westerhoff H. V. 1993a; Control analysis of the dependence of E. coli physiology on the H+-ATPase.. ProcNatlAcadSci USA 908068–8072
    [Google Scholar]
  19. Jensen P. R., Westerhoff H. V., Michelsen O. 1993b; Excess capacity of H+-ATPase and inverse respiratory control in Escherichia coli.. EMBO J 12:1277–1282
    [Google Scholar]
  20. Kacser H., Burns J.A. 1973; The control of flux.. In Rate Control of Biological Processes pp. 65–104 Edited by Davies D. D. London: Cambridge University Press;
    [Google Scholar]
  21. Kell D.B. 1987; Forces, fluxes and the control of microbial growth and metabolism.. J Gen Microbiol 133:1651–1665
    [Google Scholar]
  22. Kell D.B., Westerhoff H.V. 1985; Catalytic facilitation and membrane bioenergetics.. In Organised Multiensyme Systems pp. 63–138 Edited by Welch G. R. New York: Academic Press; Protein burden in Zymomonas mobilis
    [Google Scholar]
  23. Kell D.B., Westerhoff H.V. 1986; Metabolic control theory: its role in microbiology and biotechnology.. FEMS Microbiol Rev 39:305–320
    [Google Scholar]
  24. Kholodenko B.N., Westerhoff H.V. 1993; Metabolic channelling and control of the flux.. FEBS Lett 320:75–78
    [Google Scholar]
  25. Kholodenko B.N., Westerhoff H.V. 1994; Sum of the flux control coefficients: what is it equal to in different systems?. In Modern Trends in Biothermokinetics pp. 205–210 Edited by Schuster S., Rigoulet M., Ouhabi R., Mazat J.-P. New York: Plenum Press;
    [Google Scholar]
  26. Kholodenko B.N., Westerhoff H.V. 1995; The macroworld versus the microworld of biochemical regulation and control.. Trends Biochem Sci 20:52–54
    [Google Scholar]
  27. Kholodenko B.N., Molenaar D., Schuster S., Heinrich R., Westerhoff H.V. 1995; Defining control coefficients in non-ideal metabolic pathways.. Biophys Chem (in press)
    [Google Scholar]
  28. Koch A.L. 1983; The protein burden of lac operon products.. J Mol Evol 19:455–462
    [Google Scholar]
  29. Linton J.D. 1991; Metabolite production and growth efficiency.. Antonie Leeuwenhoek 60:239–311
    [Google Scholar]
  30. Marr A.G. 1991; Growth rate of Escherichia coli.. Microbiol Rev 55:316–333
    [Google Scholar]
  31. Neale A.D., Scopes R.K., Kelly J.M., Wettenhall R.E.H. 1986; The two alcohol dehydrogenases of Zymomonas mobilis: purification by different dye ligand chromatography, molecular characterization and physiological role.. Eur J Biochem 154:119–124
    [Google Scholar]
  32. Neale A.D., Scopes R.K., Wettenhall R.E.H., Hoogenraad N.J. 1987; Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties and genetic expression in Escherichia coli.. J Bacterial 169:1024–1028
    [Google Scholar]
  33. Niederberger P., Prasad R., Miozzari G., Kacser H. 1992; A strategy for increasing an in vivo flux by genetic manipulations.. Biochem J 287:473–479
    [Google Scholar]
  34. Novick A., Weiner M. 1957; Enzyme induction as an all-or-none phenomenon.. Proc Natl Acad Sci USA 43553–566
    [Google Scholar]
  35. Osman Y.A., Conway T., Bonetti S.J., Ingram L.O. 1987; Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation.. J Bacteriol 169:3726–3736
    [Google Scholar]
  36. Pawluk A., Scopes R.K., Griffiths-Smith K. 1986; Isolation and properties of the glycolytic enzymes from Zymomonas mobilis.. Biochem J 238:275–281
    [Google Scholar]
  37. Ruijter G.J.G., Postma P.W., Van Dam K. 1991; Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli.. J Bacteriol 173:6184–6191
    [Google Scholar]
  38. Schaaff I., Heinisch J., Zimmermann F.K. 1989; Overproduction of glycolytic enzymes in yeast.. Yeast 5:285–290
    [Google Scholar]
  39. Schuster S., Heinrich R. 1992; The definition of metabolic control analysis revisited.. Biosystems 27:1–15
    [Google Scholar]
  40. Schuster S., Kahn D., Westerhoff H.V. 1993; Modular analysis of the control of complex metabolic pathways.. Biophys Chem 48:1–17
    [Google Scholar]
  41. Scopes R.K., Testolin V., Stoter A., Griffiths-Smith K., Algar E.M. 1985; Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis.. Biochem J 228:627–634
    [Google Scholar]
  42. Seo J.-H., Bailey J.E. 1985; Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli.. Biotechnol Bioeng 27:1668–1674
    [Google Scholar]
  43. Small J.R., Kacser H. 1993; Responses of metabolic systems to large changes in enzyme activities and effectors. I. The linear treatment ofunbranched chains.. Eur J Biochem 213:613–624
    [Google Scholar]
  44. Stouthamer A.H. 1979; A search for correlation between theoretical and experimental growth yields.. Int Rev Biochem 21:1–47
    [Google Scholar]
  45. Stucki J.W. 1980; The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation.. Eur J Biochem 109:269–283
    [Google Scholar]
  46. Tempest D.W., Neijssel O.M. 1984; The status of YATP and maintenance energy as biologically interpretable phenomena.. Annu Rev Microbiol 38:459–486
    [Google Scholar]
  47. Van Dam K., Van der Vlag J., Kholodenko B.N., Westerhoff H.V. 1993; The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two.. Eur J Biochem 212:791–797
    [Google Scholar]
  48. Van der Vlag J., Van Dam K., Postma P.W. 1994; Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium.. J Bacteriol 176:3518–3526
    [Google Scholar]
  49. Walsh K., Koshland D.E. Jr 1985; Characterization of ratecontrolling steps in vivo by use of an adjustable expression vector.. Proc Natl Acad Sci USA 823577–3581
    [Google Scholar]
  50. Westerhoff H.V., Van Dam K. 1987 Thermodynamics and Control of Biological Free Energy Transduction. Amsterdam: Elsevier;
    [Google Scholar]
  51. Westerhoff H.V., Hellingwerf K.J., Van Dam K. 1983; Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate.. Proc Natl Acad Sci USA 80305–309
    [Google Scholar]
  52. Westerhoff H.V., Koster J.G., Van Workum M., Rudd K.E. 1990; On the control of gene expression.. In Control of Metabolic Processes pp. 399–412 Edited by Cornish-Bowden A., Cérdenas M. L. New York: Plenum Press;
    [Google Scholar]
  53. Wilhelm T., Hoffmann-Klipp E., Heinrich R. 1994; An evolutionary approach to enzyme kinetics; optimization of ordered mechanisms.. Bull Math Biol 56:65–106
    [Google Scholar]
  54. Yomano L.P., Scopes R.K., Ingram L.O. 1993; Cloning, sequencing, and expression of the Zymomonas mobilisphosphoglyceratemutase gene (pgm) in Escherichia coli.. J Bacteriol 175:3926–3933
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-9-2329
Loading
/content/journal/micro/10.1099/13500872-141-9-2329
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error