1887

Abstract

In the plant pathogen pv. fructose is transported by a specific phosphotransferase system (PTS). This PTS involves a multiphosphoryl transfer protein (MTP) encoded by the gene, which was cloned and sequenced. is part of a transcriptional unit together with the gene, coding for 1-phosphofructokinase, which is located upstream from the gene, coding for the fructose-specific permease (EIIB'BC). The amino acid sequence of the MTP deduced from the sequence shared 46% identical residues with an MTP identified in The MTP (837 amino acid residues) consists of three moieties: a fructose-specific enzyme-IIA-like N-terminal moiety (residues 1-148), followed by an HPr-like moiety (161-251) and an enzyme-l-like C-terminal moiety (274-837). The three domains are separated by two flexible hinge regions rich in proline and alanine residues. The construction of a mutant confirmed the role of the MTP in fructose transport and phosphorylation in

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-9-2253
1995-09-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/9/mic-141-9-2253.html?itemId=/content/journal/micro/10.1099/13500872-141-9-2253&mimeType=html&fmt=ahah

References

  1. Beyreuther K., Raufuss H., Schrecker O., Hengstenberg W. 1977; The phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus 1. Amino acid sequence of the phosphocarrier protein HPr.. Eur J Biochem 75:275–286
    [Google Scholar]
  2. De Crécy-Lagard V., Glaser P., Lejeune P., Sismeiro O., Barber C.E., Daniels M.J., Danchin A. 1990; A Xanthomonas campestris pv.campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity.. J Bacteriol 172:5877–5883
    [Google Scholar]
  3. De Crécy-Lagard V., Bouvet O.M.M., Lejeune P., Danchin A. 1991a; Fructose catabolism in Xanthomonas campestris pv.campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes.. J Biol Chem 266:18154–18161
    [Google Scholar]
  4. De Crécy-Lagard V., Lejeune P., Bouvet O.M.M., Danchin A. 1991b; Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv.campestris. . Mol & Gen Genet 227:465–472
    [Google Scholar]
  5. De Reuse H., Danchin A. 1988; TheptsH,ptsI, and err genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription.. J Bacteriol 170:3827–3837
    [Google Scholar]
  6. Erni B., Zanolari B., Kocher H.P. 1987; The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation and penetration of phage λ DNA.. J Biol Chem 262:5238–5247
    [Google Scholar]
  7. Fischer R., Eisermann R., Reiche B., Hengstenberg W. 1989; Cloning, sequencing and overexpression of the mannitol specific enzyme-III-encoding gene of Staphylococcus carnosus. . Gene 82:249–257
    [Google Scholar]
  8. Fischer R., Pogge van Strandmann R., Hengstenberg W. 1991; Mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis-. molecular cloning and nucleotide sequences of the Enzyme IIIMtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Escherichia coli and comparison of the gene products with similar enzymes.. J Bacterial 173:3709–3715
    [Google Scholar]
  9. Gagnon G., Vadeboncoeur C., Lesveque R.C., Frenette M. 1992; Cloning, sequencing and expression in Escherichia coli of the ptsI gene encoding enzyme I of the phosphoenolpyruvate : sugar phosphotransferase transport system from Streptococcus salivarius. . Gene 121: 71–78
    [Google Scholar]
  10. Geerse R.H., Ruig C.R., Schuitema A.R.J., Postma P.W. 1986; Relationship between pseudo-HPr and the PEP fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli. . Mol & Gen Genet 203:435–444
    [Google Scholar]
  11. Geerse R.H., Izzo F., Postma P.W. 1989; The PEP:fructose phosphotransferase system in Salmonella typhimurium-. FPr combines Enzyme IIIFru and pseudo-HPr activities.. Mol & Gen Genet 216:517–525
    [Google Scholar]
  12. Genetics Computer Group 1991 Program Manual for the GCG Package Version 7 April 1991 Genetics Computer Group 575 Science Drive, Madison, WI 53711, USA.:
    [Google Scholar]
  13. Harding N., Raffo S., Raimondi A., Cleary J., lelpi L. 1993; Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum.. J Gen Microbiol 139:447–457
    [Google Scholar]
  14. Herzberg O., Reddy P., Sutrina S., Saier M.H., Reizer J., Kadapia G. 1992; Structure of the histidine-containing phospho- carrier protein HPr from Bacillus subtilis at 2'0-A resolution.. Proc Natl Acad Sci USA 892499–2503
    [Google Scholar]
  15. Honeyman A.L., Curtiss R. 1992; Isolation, characterization, and nucleotide sequence of the Streptococcus mutans mannitol- phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphoenolpyruvate phosphotransferase system.. Infect Immun 60:3369–3375
    [Google Scholar]
  16. Jeanes A., Pittsley J.E., Senti F.R. 1961; Polysaccharide B- 1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation.. J Appl Polym Sci 5:519–526
    [Google Scholar]
  17. Jones-Mortimer M.C., Kornberg H.L. 1974; Genetical analysis of fructose utilization by Escherichia coli. . Proc R Soc Land Ser B 187121–131
    [Google Scholar]
  18. Kroon G.J.A., Grötzinger J., Dijkstra K., Scheek R.M., Robillard G.T. 1993; Backbone assignments and secondary structure of the Escherichia coli enzyme-II mannitol A domain determined by heteronuclear three dimensional NMR spectroscopy.. Protein Sci 2:1331–1341
    [Google Scholar]
  19. Lee C.A., Saier M.H. Jr 1983; Mannitol-specific Enzyme II of the bacterial phosphotransferase system. III. Nucleotide sequence of the permease gene.. J Biol Chem 258:10761–10767
    [Google Scholar]
  20. Lengeler J.W., Titgemeyer F., Vogler A.P., Wöhrl. 1990; Structure and homologies of carbohydrate: phosphotransferase system (PTS) proteins.. Phil Trans R Soc Lond Ser B 326:489–504
    [Google Scholar]
  21. LiCalsi C, Crocenzi T.S., Freire E., Roseman S. 1991; Sugar transport by the bacterial phosphotransferase system. Structural and thermodynamic domains of Enzyme I of Salmonella typhimurium. . J Biol Chem 266:19519–19527
    [Google Scholar]
  22. Meadow N.D., Fox D.K., Roseman S. 1990; The bacterial phosphoenolpyruvate : glycose phosphotransferase system.. Annu Rev Biochem 59:497–542
    [Google Scholar]
  23. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments.. Gene 19:269–276
    [Google Scholar]
  24. Niersbach M., Kreuzaler F., Geerse R.H., Postma P.W., Hirsch H.J. 1992; Cloning and nucleotide sequence of the Escherichia coli K-12ppsA gene, encoding PEP synthase.. Mol & Gen Genet 231:332–336
    [Google Scholar]
  25. Orchard L.M.D., Kornberg H.L. 1990; Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12 and lacC of Staphylococcus aureus. . Proc R Soc Lond Ser B 24287–90
    [Google Scholar]
  26. Pocalyko D.J., Carroll L.J., Martin B.M., Babbitt P.C., Dunaway-Mariano D. 1990; Analysis of sequence homologies in plant and bacterial pyruvate phosphate dikinase, Enzyme I of the phosphoenolpyruvate : sugar phosphotransferase system and other PEP-utilizing enzymes. Identification of potential catalytic and regulatory motifs.. Biochemistry 29:10757–10765
    [Google Scholar]
  27. Postma P.W., Lengeler J.W., Jacobson G.R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase system of bacteria.. Microbiol Rev 57:543–594
    [Google Scholar]
  28. Prior T.I., Kornberg H.L. 1988; Nucleotide sequence offruA, the gene specifying enzyme IIFru of the phosphoenolpyruvate- dependent sugar phosphotransferase system in Escherichia coli K12.. J Gen Microbiol 134:2757–2768
    [Google Scholar]
  29. Ramseier T.M., Nègre D., Cortay J.-C, Cozzone A.J., Saier M.H. Jr 1993; In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to thefru,pps, ace,pts and icd operons of Escherichia coli and Salmonella typhimurium. . Mol Biol 234:28–14
    [Google Scholar]
  30. Reizer J., Sutrina S.L., Saier M.H., Stewart G.C, Peterkofsky A., Reddy P. 1989; Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate : sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr.. EMBO J 8:2111–2120
    [Google Scholar]
  31. Reizer J., Hoischen C, Pham T.N., Saier M.H. Jr 1993; Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate : sugar phosphotransferase system.. Protein Sci 2:506–521
    [Google Scholar]
  32. Reizer J., Michotey V., Reizer A., Saier M.H. Jr 1994a; Novel phosphotransferase system genes revealed by bacterial genome analysis : unique, putative fructose- and glucoside-specific systems.. Protein Sci 3:440–450
    [Google Scholar]
  33. Reizer J., Reizer A., Kornberg H.L., Saier M.H. Jr 1994b; Sequence of the fruB gene of Escherichia coli encoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate : sugar phosphotransferase system.. FEMS Microbiol Lett 118:159–162
    [Google Scholar]
  34. Roy A., Glaser P., Danchin A. 1988; Aspects of regulation of adenylate cyclase synthesis in Escherichia coli K12.. J Gen Microbiol 134:359–367
    [Google Scholar]
  35. Saffen D.W., Presper K.A., Presper T.L., Doering T.L., Roseman S. 1987; Sugar transport by the phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsl and crr genes.. J Biol Chem 262:16241–16253
    [Google Scholar]
  36. Saier M.H., Reizer J. 1992; Proposed uniform nomenclature for proteins and protein domains of the phosphoenol- pyruvate: sugar phosphotransferase system.. J Bacteriol 174:1433–1438
    [Google Scholar]
  37. Saier M.H., Reizer J. 1994; The bacterial phosphotransferase system: new frontiers 30 years later.. Mol Microbiol 13:755–764
    [Google Scholar]
  38. Saier M.H., Yamada M., Erni B., Suda K., Lengeler J., Ebner R., Argos P., Rak B., Schnetz K., Lee C.A., Stewart G.G, Breidt F., Waygood E.B., Peri K.G., Doolittle R.F. 1988; Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons.. FASEB J 2:199–208
    [Google Scholar]
  39. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  41. Sharma S., Georges F., Delbaere L.T.J., Lee J.S., Klevit R.E., Waygood E.B. 1991; Epitope mapping by mutagenesis distinguishes between the two tertiary structures of the histidine- containing protein HPr.. Proc Natl Acad Sci USA 884877–4881
    [Google Scholar]
  42. Sheperd J.C.W. 1981; Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its evolutionary justification.. Proc Natl Acad Sci USA 781596–1600
    [Google Scholar]
  43. Silhavy T.J., Berman M.L., Enquist L.W. 1984 (editors) Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sprenger G.A. 1993; Two open reading frames adjacent to the Escherichia coli K-12 transketolase (tkt) gene show high similarity to the mannitol phosphotransferase system enzymes from Escherichia coli and various Gram-positive bacteria.. Biochim Biophys Acta 1158:103–106
    [Google Scholar]
  45. Sutherland I.W., Ellwood D.C. 1979; Microbial exopolysaccharides - industrial polymers of current and future potential.. Symp Soc Gen Microbiol 29:107–150
    [Google Scholar]
  46. Van Weeghel R.P., Meyer G.H., Keck W., Robillard G.T. 1991; Phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli: overexpression, purification and characterization of the enzymatically active C-terminal domain of Enzyme IIMtl equivalent to Enzyme IIIMtl.. Biochemistry 30:1774–1779
    [Google Scholar]
  47. VonHugo H., Gottschalk G. 1974; Purification and properties of 1-phosphofructokinase from Clostridium pasteurianum. . Eur J Biochem 48:455–463
    [Google Scholar]
  48. Waygood E.B. 1980; Resolution of the phosphoenol- pyruvate: fructose phosphotransferase system of Escherichia coli into two components: enzyme IIFru and fructose-induced HPr-like protein (FPr).. Can J Biochem 58:1144–1146
    [Google Scholar]
  49. Wu L.-F., Saier M.H. Jr 1990; Nucleotide sequence of the fruA gene, encoding the fructose permease of the Rhodobacter capsulatus phosphotransferase system, and analyses of the deduced protein sequence.. J Bacteriol 172:7167–7178
    [Google Scholar]
  50. Wu L.-F., Tomich J.M., Saier M.H. Jr 1990; Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HP) gene in Rhodobacter capsulatus and comparison with homologous genes from other organisms.. J Mol Biol 213:687–703
    [Google Scholar]
  51. Wu L.-F., Reizer A., Reizer J., Cai B., Tomich J.M., Saier M.H. Jr 1991; Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli. . J Bacteriol 173:3117–3127
    [Google Scholar]
  52. Zhu P.-P., Reizer J., Reizer A., Peterkovsky A. 1993; Unique monocistronic operon (ptsH) in Mycoplasma capricolum encoding the phosphocarrier protein, HPr, of the phosphoenolpyruvate: sugar phosphotransferase system.. J Biol Chem 268:26531–26540
    [Google Scholar]
/content/journal/micro/10.1099/13500872-141-9-2253
Loading
/content/journal/micro/10.1099/13500872-141-9-2253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error