1887

Abstract

Two mutants carrying different deletions of the coding sequence of , Ã1, which encodes a protein lacking the last 26 C-terminal amino acids, and Ã2, which completely lacks the coding region, were analysed for derepression of glucose-repressible maltose, galactose, raffinose and ethanol utilization pathways in response to glucose limitation. The role of the gene product in the regulation of carbon catabolite repressible enzymes maltase, invertase, alcohol dehydrogenase, NAD-dependent glutamate dehydrogenase (NAD-GDH) and L-lactate:ferricytochrome-c oxidoreductase (L-LCR) was also analysed. The gene product is required for the rapid glucose derepression of all above-mentioned carbon source utilization pathways and of all the enzymes except for L-LCR. NAD-GDH is regulated by in the opposite way and, in fact, this enzyme was released at higher levels in both mutants than in the wild-type strain. Therefore, the product of appears to be involved in positive and negative regulation. Both deletions result in growth and catalytic defects; in some cases partial modification of the gene product yielded more dramatic effects than its complete absence. Moreover, evidence is provided that the gene product regulates galactose- and maltose-inducible genes at the transcriptional level and is a positive regulator of maltase, maltose permease and galactose permease gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-9-2201
1995-09-01
2021-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/9/mic-141-9-2201.html?itemId=/content/journal/micro/10.1099/13500872-141-9-2201&mimeType=html&fmt=ahah

References

  1. Algeri A.A., Bianchi L., Viola A.M., Puglisi P.P., Marmiroli N. 1981; IMP1/imp1: a gene involved in the nucleo-mitochondrial control of galactose fermentation in Saccharomyces cerevisiae.. Genetics 97:27–44
    [Google Scholar]
  2. Attardi G., Schatz G. 1988; Biogenesis of mitochondria.. Annu Rev Cell Biol 4:289–333
    [Google Scholar]
  3. Carlson M., Botstein D. 1982; Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase.. Cell 28:145–154
    [Google Scholar]
  4. Casadaban M.J., Martinez-Arias A., Shapira S.K., Chou J. 1983; β Galactosidase gene fusions for analysing gene expression in Escherichia coli and yeast.. Methods Enɀymol 100:293–308
    [Google Scholar]
  5. Celenza J.L., Carlson M. 1984; Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae.. Mol Cell Biol 4:49–53
    [Google Scholar]
  6. Denis C.L., Ferguson J., Young E.T. 1983; mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiaedecrease upon growth on a non fermentable carbon source.. J Biol Chem 25:1165–1171
    [Google Scholar]
  7. Donnini C., Goffrini P., Rossi C., Ferrero I. 1990; Isolation and characterization of carbon catabolite repression mutants in Saccharomyces cerevisiae.. Microbiologica 13:283–295
    [Google Scholar]
  8. Donnini C., Lodi T., Ferrero I., Algeri A.A., Puglisi P.P. 1992a; Allelism of IMP1 and GAL2 genes of Saccharomyces cerevisiae.. J Bacterial 174:3411–3415
    [Google Scholar]
  9. Donnini C., Lodi T., Ferrero I., Puglisi P.P. 1992b; IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae.. Yeast 8:83–93
    [Google Scholar]
  10. Eraso P., Gancedo J.M. 1984; Catabolite repression in yeasts is not associated with low levels of cAMP.. Eur J Biochem 141:195–198
    [Google Scholar]
  11. Ferrero I., Rambaldelli R., Genga A.M., Donnini C., Puglisi P.P. 1984; ALG/alg: a single gene controlling the utilization of lactate in the presence of antimycin in the yeast Saccharomyces cerevisiae.. Curr Genet 8:407–411
    [Google Scholar]
  12. Gancedo J.M. 1992; Carbon catabolite repression in yeast.. Eur J Biochem 206:297–313
    [Google Scholar]
  13. Goldstein A., Lampen J.O. 1975; β-D-Fructofuranoside fructohydrolase from yeast.. Methods Enɀymol 42:504–511
    [Google Scholar]
  14. Grisolia S., Quisado C.L., Fernandez M. 1964; Glutamate dehydrogenase from yeast and animal tissue.. Biochim Biophys Acta 81:61–70
    [Google Scholar]
  15. Grivell L.A. 1989; Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis.. Eur J Biochem 182:477–493
    [Google Scholar]
  16. Hanson A.D., Jacobsen J.V. 1984; Control of lactate dehydrogenase, lactate glycolysis, and α-amylase by O2 deficit in barley aleurone layers.. Plant Physiol 75:566–572
    [Google Scholar]
  17. Herskowitz I. 1989; A regulatory hierarchy for cell specialization in yeast.. Nature 342:749–757
    [Google Scholar]
  18. Holzer H., Schneider S. 1957; Anreicherung und Trennung einer DPN-spezifischen und einer TPN-spezifischen Glutaminosaure Dehydrogenase aus Hefe.. Biochem Z 329:361–367
    [Google Scholar]
  19. Ito H., Fukada Y., Murata K., Kimura A. 1983; Transformation of intact cells treated with alkali cations.. J Bacteriol 153:163–168
    [Google Scholar]
  20. Johnston M. 1987; A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae.. Microbiol Rev 51:458–476
    [Google Scholar]
  21. Johnston M., Carlson M. 1992; Regulation of carbon and phosphate utilization.. In The Molecular and Cellular Biology of the Yeast Saccharomyces. Gene Expression 2 pp. 193–281 Jones E.W., Pringle J.R., Broach J.R. Edited by Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  22. Liao X., ButOW R.A. 1993; RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus.. Cell 72:61–71
    [Google Scholar]
  23. Lodi T., Guiard B. 1991; Complex transcriptional regulation of the Saccharomyces cerevisiae CYB2 gene encoding cytochrome b2: CYP1(HAP1) activator binds to the CYB2 upstream activation site UAS1-B2.. Mol Cell Biol 11:3762–3772
    [Google Scholar]
  24. Lutstorf U., Megnet R. 1968; Multiple forms of alcohol dehydrogenase in S. cerevisiae. Physiological control of ADH2 and properties of ADH2 and ADH4.. Arch Biochem Biophys 126:933–944
    [Google Scholar]
  25. Mahler H.R., Wilkie D. 1978; Mitochondrial control in the sugar utilization in Saccharomyces cerevisiae.. Plasmid 1:125–133
    [Google Scholar]
  26. Mandel H., Higa A. 1970; Calcium dependent bacteriophage DNA infection.. J Mol Biol 53:159–162
    [Google Scholar]
  27. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  28. Miller S.M., Magasanik B. 1990; Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae.. J Bacteriol 172:4927–4935
    [Google Scholar]
  29. Nasmyth K.A., Reed S.I. 1980; Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene.. Proc Natl Acad Sci USA 772119–2121
    [Google Scholar]
  30. Parikh V.S., Morgan M.M., Scott R., Clement L.S., Butow R.A. 1987; The mitochondrial genotype can influence nuclear gene expression in yeast.. Science 235:576–580
    [Google Scholar]
  31. Partaledis J.A., Mason T.L. 1988; Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MPR13, a protein of the small subunit of the mitochondrial ribosome.. Mol Cell Biol 8:3647–3660
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  33. Sherman F., Fink G.R., Hicks J.B. 1982 Methods in Yeast Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  34. Somlo M. 1965; Induction des lactico-cytochrome c reductases (D- et L-) de la levure aerobie par des lactates (D- et L-).. Biochim Biophys Acta 97:183–201
    [Google Scholar]
  35. Trumbly R.J. 1992; Glucose repression in the yeast Saccharomyces cerevisiae.. Mol Microbiol 6:15–21
    [Google Scholar]
  36. Tzagoloff A., Dieckmann C.L. 1990; PET genes of Saccharomyces cerevisiae.. Microbiol Rev 54:211–225
    [Google Scholar]
  37. Vanoni M., Sollitti P., Goldenthal M., Marmur J. 1989; Structure and regulation of the multigene family controlling maltose fermentation in budding yeast.. Prog Nucleic Acid Res Mol Biol 37:281–322
    [Google Scholar]
  38. Verdier J.M. 1990; Regulatory DNA-binding proteins in yeast: an overview.. Yeast 6:271–297
    [Google Scholar]
  39. de Vries S., Marres C.A.M. 1987; The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism.. Biochim Biophys Acta 895:205–239
    [Google Scholar]
  40. Wang S.S., Brandriss M.C. 1987; Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product.. Mol Cell Biol 7:4431–4440
    [Google Scholar]
  41. Wilkie D., Evans I.H., Egilsonn V., Diala E.S., Collier D. 1983; Mitochondria, cell surface, and carcinogenesis.. Int Rev Cytol Suppl 15:157–189
    [Google Scholar]
  42. Zimmermann F.K., Kaufmann I., Rosemberger H., Hausmann P. 1977; Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.. Mol & Gen Genet 154:75–82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-9-2201
Loading
/content/journal/micro/10.1099/13500872-141-9-2201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error