1887

Abstract

General properties of the heat shock response in were examined. Enhanced or synthesis of 24 proteins was observed upon heat shock from 30 °C to 42°C in cells labelled with [S]methionine. A similar response could also be induced by a rise in temperature from 30 °C to 37 °C. Of these heat shock proteins, two were determined to be homologues of GroEL and DnaK, based upon their immunological cross-reactivity with antibodies raised against the proteins. Three proteins, of molecular sizes 38, 44 and 48 kDa, which were undetectable in the 30 °C grown culture, appeared after the heat shock. As in other prokaryotic systems thermal induction of many of the proteins was transient, but both DnaK and GroEL remained induced for at least 28 min after heat shock. DNA hybridization studies revealed that genes analogous not only to and but also to of exist in . Heat shock induced thermotolerance in but made the cells more sensitive to UV radiation. Unlike in , however, heat shock had no effect on the progeny virus yield in .

Keyword(s): DnaK , GroEL , heat shock and Vibrio cholerae
Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-9-2101
1995-09-01
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/9/mic-141-9-2101.html?itemId=/content/journal/micro/10.1099/13500872-141-9-2101&mimeType=html&fmt=ahah

References

  1. Bardwell J.C.A., Craig E.A. 1984; Major heat shock gene of Drosophila and the Escherichia coli heat inducible dnaK gene are homologous.. Proc Natl Acad Sci USA 81848–852
    [Google Scholar]
  2. Bardwell J.C.A., Tilly K., Craig E., King J., Zylicz M., Georgopulos C. 1986; The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene - a gene that encodes a heat shock protein.. J Biol Chem 261:1782–1785
    [Google Scholar]
  3. Basu R., Ghosh A. 1987; Inducible reactivation of UV- irradiated cholera phage e5 in Vibrio cholerae MAK757.. Mol & Gen Genet 209:175–178
    [Google Scholar]
  4. Basu R., Ghosh A.N., Dasgupta S., Ghosh A. 1993; Biophysical characterization of Vibrio El Tor typing phage e5.. FEMS Microbiol Lett 106:9–18
    [Google Scholar]
  5. Bhasin N., Ghosh A. 1995; Evidence for a weak adaptive response to alkylation damage in Vibrio cholerae. . Mutat Res 336:79–89
    [Google Scholar]
  6. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  7. Cavicchioli R., Watson K. 1986; Loss of heat-shock acquisition of thermotolerance in yeast is not correlated with loss of heat-shock proteins.. FEBS Lett 207:149–152
    [Google Scholar]
  8. Chakravarti D., Ghosh A. 1987; Reversal by cyclic AMP of the urea-induced inhibition of synthesis of a catabolite-repressible enzyme in Vibrio cholerae. . J Gen Microbiol 133:3265–3270
    [Google Scholar]
  9. Chandrasekhar G.N., Tilly K., Woolford C., Hendrix R., Georgopoulos C. 1986; Purification and properties of the groES morphogenetic protein of Escherichia coli. . J Biol Chem 261:12414–12419
    [Google Scholar]
  10. Churchward G., Belin D., Nagamine Y. 1984; A pSClOl derived plasmid which shows no sequence homology to other commonly used cloning vectors.. Gene 31:165–171
    [Google Scholar]
  11. Dascher C.C., Poddar S.K., Maniloff J. 1990; Heat shock response in mycoplasmas, genome-limited organisms.. J Bacteriol 172:1823–1827
    [Google Scholar]
  12. Ellis E.L., Delbruck M. 1939; The growth of bacteriophage.. J Gen Physiol 22:365–384
    [Google Scholar]
  13. Epstein P.R., Ford T.E., Colwell R.R. 1993; Marine ecosystems.. Lancet 342:1216–1219
    [Google Scholar]
  14. Georgopoulos C.P., Hohn B. 1978; Identification of a host protein necessary to bacteriophage morphogenesis (the groE gene product).. Proc Natl Acad Sci USA 75131–135
    [Google Scholar]
  15. Ghosh A., Maniloff J., Gerling D.A. 1978; Inhibition of Mycoplasma cell division by cytochalasin B.. Cell 13:57–64
    [Google Scholar]
  16. Hatchard C.G., Parker C.A. 1956; A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer.. Proc R Soc Lond Ser A 235518–536
    [Google Scholar]
  17. Hendrix R.W. 1979; Purification and properties of groE, a host protein involved in bacteriophage assembly.. J Mol Biol 129:375–392
    [Google Scholar]
  18. Hendrix R.W., Tsui L. 1978; Role of the host in virus assembly: cloning of the E. coli groE gene and identification of its protein product.. Proc Natl Acad Sci USA 75136–139
    [Google Scholar]
  19. Hohn T., Hohn B., Engel A., Wurtz M., Smith P.R. 1979; Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly.. J Mol Biol 129:359–373
    [Google Scholar]
  20. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 721:680–685
    [Google Scholar]
  21. Maloy S.R. 1990; Characterization of auxotrophic requirements.. In Experimental Techniques in Bacterial Genetics pp. 25–26 London: Jones & Bartlet;
    [Google Scholar]
  22. Martin J., Hartl F.U. 1993; Protein folding in the cell: molecular chaperones pave the way.. Structure 1:161–164
    [Google Scholar]
  23. McAlister L, Finkelstein D.B. 1980; Heat shock proteins and thermal resistance in yeast.. Biochem Biophys Res Commun 93:819–824
    [Google Scholar]
  24. Mekalanos J.J. 1983; Duplication and amplification of toxin genes in Vibrio cholerae. . Cell 35:253–263
    [Google Scholar]
  25. Mitra S., Ghosh A., Ghosh R.K. 1986; Metabolic reactions responsible for glucose stimulation of alkaline phosphatase in Vibrio cholerae. . J Gen Microbiol 132:2601–2603
    [Google Scholar]
  26. Neidhardt F.G, Van Bogelen R.A. 1987; Heat shock response.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 2 pp. 1334–1345 Edited by Neidhardt F. C., Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Neidhardt F.G, Phillips T.A., Van Bogelen R.A., Smith M.W., Georgalis Y., Subramanian A.R. 1981; Identity of the B56.5 protein, the A protein, and the groE gene product of Escherichia coli. . J Bacteriol 145:513–520
    [Google Scholar]
  28. Pardasani D., Fitt P.S. 1989; Strain dependent induction by heat shock of resistance to ultraviolet light in Escherichia coli. . Curr Microbiol 18:99–103
    [Google Scholar]
  29. Pardasani D., Sharma N., Fitt P.S. 1989; Dependence on the Ion gene of the thermal induction of resistance to ultraviolet light in Escherichia coli. . Curr Microbiol 19:129–133
    [Google Scholar]
  30. Parsed D.A., Lindquist S. 1993; The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.. Annu Rev Genet 27:436–496
    [Google Scholar]
  31. Parsot C., Mekalanos J.J. 1990; Expression of Tox R, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response.. Proc Natl Acad Sci USA 879898–9902
    [Google Scholar]
  32. Pedersen S., Bloch P.L., Reeh S., Neidhardt F.G. 1978; Patterns of the amount of 140 individual proteins at different growth rates.. Cell 14:179–190
    [Google Scholar]
  33. Plesofsky-Vig N., Brambl R. 1985; Heat shock response of Neurospora crassa: protein synthesis and induced thermotolerance.. J Bacteriol 162:1083–1091
    [Google Scholar]
  34. Ramsay N. 1988; A mutant in a major heat shock protein of Escherichia coli continues to show inducible thermotolerance.. Mol & Gen Genet 211:332–334
    [Google Scholar]
  35. Rigby P.W., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I.. J Mol Biol 113:237–251
    [Google Scholar]
  36. Sahu G.K., Chowdhury R., Das J. 1994; Heat shock response and heat shock protein antigens of Vibrio cholerae. . Infect Immun 62:5624–5631
    [Google Scholar]
  37. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Siddiqui K.A.I., Ghosh A. 1983; Temperate phage induction and filament formation in Vibrio cholerae by furazolidone.. Biochem Biophys Res Commun 112:1106–1 111
    [Google Scholar]
  39. Taylor D.N., Killeen K.P., Hack D.C., Kenner J.R., Coster T.S., Beattie D.T., Ezzell J., Hyman T., Trofa A., Sjogren M.H., Friedlander A., Mekalanos J.J., Sadoff J.C. 1994; Development of a live, oral, attenuated vaccine against El Tor cholera.. J Infect Dis 170:1518–1523
    [Google Scholar]
  40. Vaughan P., Sedgwick B., Hall J., Gannon J., Lindahl T. 1991; Environmental mutagens that induce the adaptive response to alkylating agents in Escherichia coli. . Carcinogenesis 12:263–268
    [Google Scholar]
  41. Visentin L.P., Hasnain S., Gallin W., Johnson K.G., Griffith D.W., Wahba A.J. 1977; Ribosomal protein SI/SI A in bacteria.. FEBS Lett 79:255–263
    [Google Scholar]
  42. Watson K. 1990; Microbial stress proteins.. Adv Microb Physiol 31:183–216
    [Google Scholar]
  43. Wiberg J.S., Mowree-McKee M.F., Stevens E.J. 1988; Induction of the heat shock regulon of Escherichia coli markedly increases production of bacterial viruses at high temperature.. J Virol 62:234–245
    [Google Scholar]
  44. Yamamoto T., Gojobori T., Yokota T. 1987; Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae Ol.. J Bacteriol 169:1352–1357
    [Google Scholar]
  45. Yura T., Nagai H., Mori H. 1993; Regulation of the heat shock response in bacteria.. Annu Rev Microbiol 47:321–350
    [Google Scholar]
/content/journal/micro/10.1099/13500872-141-9-2101
Loading
/content/journal/micro/10.1099/13500872-141-9-2101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error