1887

Abstract

Arginine is metabolized by the arginine dihydrolase pathway in trophozoites and is an important metabolic fuel for this parasite. Radiolabelled arginine was used to characterize the transport of arginine into trophozoites. The transporter had a high affinity for arginine ( 15 üM) and a high activity [ 76 nmol min (mg protein) at 25 °C]. Substrate specificity studies indicated an absolute requirement for the α-amino and carboxyl groups, but a tolerance for some substitutions in the guanidino group. The use of non-metabolized arginine analogues in combination with HPLC amino acid analysis of intra- and extracellular pools demonstrated that the arginine transporter is an arginine-ornithine antiport. Investigations of the first step of arginine metabolism, involving arginine deiminase, revealed a relatively high affinity for arginine ( 0.16 mM) and a large maximal velocity [ 550 nmol min (mg protein) at 37 °C]. Substrate specificity studies showed that the arginine deiminase had a characteristically different substrate recognition profile to that of the arginine transporter. Overall, the combination of the transporter and the deiminase result in very low intracellular arginine concentrations and their properties are consistent with the rapid transport of arginine for metabolism via the arginine dihydrolase pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-9-2063
1995-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/9/mic-141-9-2063.html?itemId=/content/journal/micro/10.1099/13500872-141-9-2063&mimeType=html&fmt=ahah

References

  1. Bogle R.G., Moncada S., Pearson J.D., Mann G.E. 1992; Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial celllarginine transporter.. Br J Pharmacol 105:768–770
    [Google Scholar]
  2. Bonay P., Cohen B.E. 1983; Neutral amino acid transport in Leisbmania promastigotes.. Biochim Biophys Acta 731:222–228
    [Google Scholar]
  3. Bourdineaud J.P., Heierli D., Gamper M., Verhoogt H.J.G., Driessen A.J.M., Konings W.N., Lazdunski C., Haas D. 1993; Characterization of the arcD arginine: ornithine exchanger of Pseudomonas aeruginosa. . J Biol Chem 268:5417–5424
    [Google Scholar]
  4. Boyde T.R.C., Rahmatullah M. 1980; Optimization of conditions for colorimetric determination of citrulline, using diacetyl monoxime.. Anal Biochem 107:424–431
    [Google Scholar]
  5. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  6. Cunin R., Glansdorff N., Piérard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria.. Microbiol Rev 50:314–352
    [Google Scholar]
  7. Driessen A.J.M., Poolman B., Kiewiet R., Konings W.N. 1987; Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger.. Proc Natl Acad Sci USA 846093–6097
    [Google Scholar]
  8. Edwards M.R., Schofield P.J., O’Sullivan W.J., Costello M. 1992; Arginine metabolism during culture of Giardia intestinalis. . Mol Biochem Parasitol 53:97–104
    [Google Scholar]
  9. Edwards M.R., Knodler L.A., Wilson J.R., Schofield P.J. 1993; The transport and metabolism of alanine by Giardia intestinalis. . Mol Biochem Parasitol 61:49–58
    [Google Scholar]
  10. Eichler W. 1989; Inhibition oflarginine iminohydrolase (EC 3.5.3.6) from Tetrahjmena thermophila by putrescine and spermidine: feedback control of polyamine biosynthesis.. Biol Chem Hoppe-Sejler 370:1127–1131
    [Google Scholar]
  11. Fricker S.P., Jones S.E.M., Ellory C., Angus J.M., Klein R.A. 1984; Threonine uptake in Trypanosoma brucei. . Mol Biochem Parasitol 11:215–223
    [Google Scholar]
  12. Hansen B.D. 1979; Trypanosoma gambiense: membrane transport of amino acids.. Exp Parasitol 48:296–304
    [Google Scholar]
  13. Hunter A., Downs C.E. 1945; The inhibition of arginase by amino acids.. J Biol Chem 157:427–446
    [Google Scholar]
  14. Knodler L.A., Edwards M.R., Schofield P.J. 1994; The intracellular amino acid pools of Giardia intestinalis Trichomonas vaginalis and Crithidia luciliae. . Exp Parasitol 19:117–125
    [Google Scholar]
  15. Law S.S., Mukkada A.J. 1979; Transport oflproline and its regulation in Leishmania tropica promastigotes.. J Protocol 26:295–301
    [Google Scholar]
  16. Manjra A.A., Dusanic D.G. 1972; Mechanisms of amino acid transport in Trypanosoma leivisi. . Comp Biochem Physiol 41:897–903
    [Google Scholar]
  17. Park B.S., Hirotani A., Nakano Y., Kitaoka S. 1984; Purification and some properties of arginine deiminase in Euglena gracilis Z.. Agric Biol Chem 48:483–489
    [Google Scholar]
  18. Prescott L.M., Jones M.E. 1969; Modified methods for the determination of carbamyl-aspartate.. Anal Biochem 32:408–419
    [Google Scholar]
  19. Schofield P.J., Edwards M.R., Matthews J., Wilson J. 1992; The pathway of arginine catabolism in Giardia intestinalis. . Mol Biochem Parasitol 51:29–36
    [Google Scholar]
  20. Shibatani T., Kakimoto T., Chibati I. 1975; Crystallization and properties oflarginine deiminase of Pseudomonasputida. . J Biol Chem 250:4580–4583
    [Google Scholar]
  21. Smith D.W., Ganaway R.L., Fahrney D.E. 1978; Arginine deiminase from Mycoplasma arthritidis. . J Biol Chem 253:6016–6020
    [Google Scholar]
  22. Sogin M.L., Gunderson J.H., Elwood H.J., Alonso R.A., Peattie D.A. 1989; Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. . Science 243:75–77
    [Google Scholar]
  23. Takaku H., Takase M., Abe S., Hayashi H., Miyazaki K. 1992; In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. . Int J Cancer 51:244–249
    [Google Scholar]
  24. Westergaard N., Beart P.M., Schousboe A. 1993; Transport ofl[3H] arginine in cultured neurons: characteristics and inhibition by nitric oxide synthase inhibitors.. J Neurochem 61:364–367
    [Google Scholar]
  25. White M.F. 1985; The transport of cationic amino acids across the plasma membrane of mammalian cells.. Biochim Biophys Acta 822:355–374
    [Google Scholar]
  26. White M.F., Christensen H.N. 1982; Cationic amino acid transport into cultured animal cells. II. Transport system barely perceptible in ordinary hepatocytes, but active in hepatoma cell lines.. J Biol Chem 257:4450–4457
    [Google Scholar]
  27. White M.F., Gazzola G.C., Christensen H.N. 1982; Cationic amino acid transport into cultured animal cells. I. Influx into cultured fibroblasts.. J Biol Chem 257:4443–4449
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-9-2063
Loading
/content/journal/micro/10.1099/13500872-141-9-2063
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error